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Cautionary Example of Nonlinear Time Series Analysis:
From Tones to Sounds
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We study the route from basic tones towards sounds and chords in terms of dynamical
complexity of the underlying time series of the sound recordings. Although this route offers
increasingly complex waveforms for the analysis, we provide conclusive evidences that even
the most complex of them is still periodic. The employed methods of nonlinear time series
analysis leading to this conclusion are very instructive, showing how to avoid pitfalls and
false claims when trying to distinguish experimentally obtained chaotic traces from those
that merely incorporate a large number of harmonic and inharmonic frequencies yet are still
periodic. We use methods of nonlinear time series analysis as well as waveforms outputted
by a frequency generator and actual recordings of picked guitar strings for the analysis, thus
employing resources that are readily available in the lab as well as classrooms.
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1. Introduction

Ever since the discovery of deterministic
chaos in nonlinear dynamical systems the
subject has been very popular [1–4], receiving
continuous attention from the scientific as
well as general audience. Not surprisingly, the
lure of chaos has been used rightfully to
captivate and inspire students for the subject
of nonlinear dynamics already at an early stage
of the educational process. In particular, several
computer simulations and simple experiments
have been proposed to accomplish this task
[5–8]. While simulations are often very clear
and instructive, experiments arguably posses the
ability to leave a more profound impact on the
audience due to their better connectedness to
real life and with it related vivid experience
of the phenomenon. However, the experimental
approach also brings along certain difficulties
that are sometimes hard to overcome in graduate
and undergraduate courses. Specific problems
are related to the acquisition of data from
the experimental setting and to the subsequent
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analysis of the resulting time series. While former
are experiment specific and usually require special
equipment in order to be surpassed, the latter can
be effectively tamed with methods of nonlinear
time series analysis [9–11].

Presently, we wish to elaborate on the
pitfalls and difficulties associated with the time
series analysis of experimental traces, specifically
by showing that complex temporal outlays
visually lacking a repeating pattern of activity,
and phase space plots with no closed paths of the
trajectory, may still be insufficient to demonstrate
chaotic behavior in the classroom. In particular,
we warn from using sophisticated methods of
nonlinear time series analysis on such traces, as
they might lead to an indication of chaos solely
due to the complexity of the employed method
rather than the inherent complexity in the studied
time series. Thus, the following text introduces a
critical point of view on the employment of certain
techniques, and perhaps more importantly, shows
how simple methods may be superior in correctly
characterizing the behavior in accordance with
the actual physics behind it.

To accomplish the designated goal, we study
the transition from isolated tones, generated
by a frequency generator, towards sounds and
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chords of a guitar. While an isolated tone is
characterized by a single sound frequency, e.g.
110.0Hz, without higher harmonics, and thus
its waveform corresponds to a simple sinusoidal
curve, the sound of the corresponding guitar
string is a conglomerate of the ground frequency
110.0Hz plus its higher harmonics, i.e. modes,
resulting in a more complex yet still periodic
wave form [12]. A guitar of reasonable quality
produces at least five higher harmonics of the
ground frequency of the string, while guitars of
exceptional quality yield up to ten, giving the
sound a warm and well-balanced sensation. An
even more complex waveform can be obtained
by playing several strings simultaneously to
yield a guitar chord, which besides the ground
frequency and its (almost) higher harmonics, is
supplemented by additional tones that are not
higher harmonics of the ground frequency. For
example, chord A with the ground frequency of
110.0Hz is obtained by simultaneously playing
also strings Cis and E with ground frequencies
of 138.6Hz and 164.8Hz, respectively. These
accompanying tones give the chord additional
richness and contribute to the harmony of the
sound. More importantly, however, due to the
vast number of excited harmonic and inharmonic
(note the ratio between the ground frequencies of
Cis, E, and A) modes of each individual string as
well as the body of the instrument, the resulting
waveform of a guitar chord is very complex,
lacking an obvious repeating pattern upon visual
inspection. Moreover, the reconstruction of the
phase space, as described in the next section,
yields a plot similar to those obtained when
studying deterministic chaotic systems. Thus,
without an in-dept knowledge of the physics
behind the mechanics of vibrating strings [13] it
is quite inviting to conclude that one is observing
a deterministic chaotic system. By employing
methods of nonlinear time series analysis, we will
show that in fact such an assessment is wrong,
and that in spite of the vast number of harmonic
and inharmonic frequencies incorporated in such
traces, the behavior is still periodic. In sum,
we will study the transition from tones of a
frequency generator towards sounds of an isolated

and multiple guitar strings to show that, despite
of the apparent increase of the complexity in the
resulting waveforms, even the most complex one
is still an example of periodic behavior.

Finally, we also provide user-friendly
programs with graphical interface for each
implemented method [14], which should make the
reproduction of presented results possible even
for individuals with little or no experience with
the presented theory, and also facilitate further
applications on other experimental recordings.
An extremely versatile collection of programs for
the time series analysis is also available through
the TISEAN project [15, 16]. We recommend
greatly to exploit the benefits offered by theses
sources.

2. Results

In order to obtain the waveforms, the
frequency generator was plugged into a speaker
and the resulting sound was recorded via the
sound card of a personal computer. Sounds of
guitar strings were recorded directly, i.e. without
the additional speaker support. Each sound was
sampled at 44kHz (dt = 2.27 · 10−5). Since we
focus on sounds with the ground frequency of
110.0Hz, corresponding to the A note, up to
two seconds long recordings suffice to capture
the relevant dynamics of the resulting waveforms.
Prior to the examination with methods of
nonlinear time series analysis, all waveforms were
re-scaled in amplitude to the unit interval to
enable a better comparison of obtained results.

We start by examining the waveform of
a frequency generator at 110.0Hz. Note that
frequency generators yield sounds that are
characterized by a single frequency. In other
words, no higher harmonics are produced.
Accordingly, the sound produced by a frequency
generator appears dull, resembling a monotonous
humming, and its waveform is nothing more
than a sinusoidal curve, as presented in the
left panel of Fig. 1(a). In the terminology of
dynamical systems such a temporal output would
be considered as a simple periodic solution,
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which can be obtained by solving for example
the well-know harmonic oscillator ẍ + ωx2 =
0 (although the physics behind the harmonic
oscillator has little in common with the physics
of vibrating strings or the output of a frequency
generator, we mention this example here to give
an intuitive and convenient explanation of the
embedding theorem and the result obtained via
Eq. 2 latter in the text). The phase space of
such a solution corresponds to a limit cycle
attractor. In order to visualize the limit cycle
without the use of mathematical models we
have to reconstruct the phase space from the
waveform of the sound recording. For this purpose
the embedding theorem [17] must be employed,
which states that for a large enough embedding
dimension m, the delay vectors

p(i) = [xi, xi+τ , xi+2τ , . . . , xi+(m−1)τ ] (1)

yield a phase space that has exactly the same
properties as the one formed by the original
variables of the system (e.g. the two variables
of the harmonic oscillator). In Eq. 1 variables
xi, xi+τ , xi+2τ , . . . , xi+(m−1)τ denote values of the
waveform, as the one presented in Fig. 1(a),
at times t = idt, t = (i + τ)dt, t = (i +
2τ)dt, . . . , t = [i+(m− 1)τ ]dt respectively, where
τ is the so-called embedding delay. Although
the implementation of Eq. 1 is straightforward,
we first have to determine proper values of m
and τ . However, since currently we want only to
visualize the phase space in a two-dimensional
graph, we restrict ourselves to determining a
proper embedding delay τ , thus obtaining the two
necessary variables xi and xi+τ .

If the temporal trace is not particularly
irregular, a suitable τ can be estimated from the
autocorrelation function

a(∆) =
1
n

n∑

i=1

xixi+∆, (2)

in particular, by the time delay ∆ the
autocorrelation function drops to zero. For the
waveform presented in Fig. 1(a) this procedure
yields τ = 100. The corresponding phase space is
presented in the right panel of Fig. 1(a). Indeed,

it can be observed nicely that a simple limit
cycle attractor is obtained that is identical to
the one we can observe by solving the harmonic
oscillator if ω and the initial displacement are
both equal to 1. Interestingly, note that τ =
100 corresponds exactly to 1/4 of the oscillation
period of the signal with the frequency 110.0Hz
if sampled at 44kHz. Put otherwise, if the
oscillation period would be 2π, as by the harmonic
oscillator, the procedure would yield τ = π/2.
Finally, since the displacement by the harmonic
oscillator obeys x(t) = cos(t) and the velocity
ẋ(t) = y(t) = sin(t) (provided the initial
displacement and ω are equal to 1), note that
indeed y(t) = x(t − τ), which can be seen as a
simple justification of Eq. 1. Note that Eq. 1 can
be formulated identically with delay components
xi, xi−τ , xi−2τ , . . . , xi−(m−1)τ .

Before we proceed by analyzing sounds of
isolated and multiple guitar strings, we will use
the frequency generator once more in order to
make the transition to complex sounds smoother.
Recall from the Introduction that a sound from
an isolated guitar string may incorporate up to
ten higher harmonics of the ground frequency.
Thus, in order to mimic this we record also two
higher harmonics of the A note (110.0Hz) with
the frequency generator and merge these into two
new waveforms, one comprising the frequencies
110.0Hz+220.0Hz and the other the frequencies
110.0Hz+220.0Hz+330.0Hz, respectively. By
listening to the resulting sounds, one can easily
identify the increase of sound richness and
complexity as the number of higher harmonics
increases. In accordance with this perception
the complexity of the underlying waveforms
also increases, as can be observed by comparing
temporal traces and the pertaining phase spaces
in Figs. 1(a) to (c). The embedding delays for
phase spaces in Figs. 1(b) and (c) equal τ = 50
and τ = 33, respectively, and were obtained with
the same procedure as was used for the phase
space presented in Fig. 1(a).

In order to further continue in the spirit of
the above-outlined increase of complexity in the
studied sound recording, we now turn to studying
sounds of isolated and multiple guitar strings.
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FIG. 1. Temporal traces and pertaining phase space
reconstructions for different sounds increasing in
complexity from top to bottom. The last two phase
space portraits are shown as three-dimensional graphs
in order to better reveal the complexity of the
underlying attractors. Also, the time span for the
bottom temporal trace is four times larger than in
the upper panels to better convey the irregularity of
the series.

Naturally, the string of our choice is string A
(second from the top on a six string guitar) as

it has the same ground frequency as our previous
recordings. The resemblance of the sound of the
guitar string with that of the frequency generator
comprising the three harmonics [Fig. 1(c)] is quite
remarkable, although the quality and richness
of the latter is obviously inferior. Indeed, the
waveform of the guitar string shown in the left
panel of Fig. 1(d) is more complex than the one in
Fig. 1(c). Still, however, the ground frequency and
the periodicity in the temporal trace are expressed
nicely. Due to the substantial complexity of
the waveform in Fig. 1(d), however, the proper
embedding delay τ can no longer be faithfully
determined by the autocorrelation function a(∆)
given by Eq. 2, because the latter does not
take into account possible nonlinear correlations
between distinct points of the time series. In order
to surpass this problem, we must calculate the
mutual information in dependence on the delay
∆. The mutual information I(∆) between xi and
xi+∆ quantifies the amount of information we
have about the state xi+∆ presuming we know
the state xi [18]. Given a time series, one first has
to find the minimum (xmin) and the maximum
(xmax) of the sequence. The absolute value of
their difference |xmax − xmin| then has to be
partitioned into j equally sized intervals, where
j is a large enough integer number. Finally, one
calculates the expression

I(∆) = −
j∑

h=1

j∑

k=1

Ph,k(∆)ln
Ph,k(∆)
PhPk

, (3)

where Ph and Pk denote the probabilities that
the variable assumes a value inside the h-th and
k-th bin, respectively, and Ph,k(∆) is the joint
probability that xi is in bin h and xi+∆ is in
bin k. Fraser and Swinney [19] argued that the
first minimum of I(∆) is a suitable candidate
for the optimal embedding delay τ . Applying
Eq. 3 on the waveform presented in Fig. 1(d)
yields τ = 30. The pertaining phase space in
three dimensions is shown in the right panel of
Fig. 1(d). Note that we have switched to the
three-dimensional view in order to better reveal
the complexity of the underlying limit cycle.
Depending on the projection angle the limit cycle
in Fig. 1(d) is folded at least five times, thus
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exceeding the complexity of its predecessor in
Fig. 1(c) substantially. Again, however, we can
conclude without a doubt that the resulting trace
is an example of complex, yet fully periodic
behavior as the cycles repeat seamlessly in the
phase space.

Finally, it remains of interest to examine the
most complex sound within this study, namely the
waveform of a guitar chord A, which as foretold
in the preceding section, will pose a puzzle
with regard to the determination of the type of
behavior it represents (chaotic or periodic). As
already mentioned in the Introduction, the chord
A is obtained by simultaneously playing string
A with the ground frequency of 110.0Hz as well
as strings Cis and E with ground frequencies
of 138.6Hz and 164.8Hz, respectively. The two
accompanying tones give the chord additional
richness in comparison to the sound of an isolated
A string, thus contributing to the harmony of the
sound. This can be verified easily by listening
to the sound of a guitar chord and comparing
it to the sound of a single plucked string.
The increased complexity of the sound can be
identified visually by inspecting the pertaining
waveform that is presented in the left panel of
Fig. 1(e). Indeed, while the predominant ground
frequency of 110.0Hz can still be inferred quite
well from the waveform, the regular periodicity
that can be identified in upper temporal traces
is apparently no longer at hand. The irregularity
of the temporal trace is vividly reflected also in
the reconstructed phase space that is shown in
the right panel of Fig. 1(e). The embedding delay
for the phase space in Fig. 1(e) equals τ = 70
and was obtained via Eq. 3 as for Fig. 1(d). By
acknowledging the fact that each guitar string
yields up to ten harmonics (see also footnote in
[12]) in the resulting waveform, as can be inferred
from Fig. 1(d), plus the fact that the simultaneous
action of multiple strings that have irrational
relations of their ground frequencies yields a non-
closed trajectory in the phase space, it is easy to
trace back the resulting complexity in the guitar
chord.

In view of this complexity assessed via visual
inspection of Fig. 1(e), one may be tempted to

declare chaos in the presented temporal trace.
However, in order to confirm this conclusively,
we need to calculate the maximal Lyapunov
exponent Λmax of the series. If the latter is
positive, this can be considered a proof of the fact
that the studied sound recording originated from
a chaotic system. On the other hand, Λmax = 0 is
characteristic for periodic solutions, as shown in
the upper panels of Fig. 1. In order to successfully
calculate Λmax from the temporal trace we still
have to determine the dimensionality (embedding
dimension) m of the underlying system. In other
words, we must determine the number of active
degrees of freedom the attractor needs to fully
evolve in the phase space, or equivalently, how
many autonomous first order ordinary differential
equations we need in order to mathematically
model the studied behavior. In order to do so
we employ the so-called false nearest neighbor
method that was presented by Kennel et al. in
[20]. The method relies on the assumption that
points that are close in the reconstructed phase
space have to stay sufficiently close also during
forward iteration. If this criterion is met, then
under some sufficiently short forward iteration the
distance between two points p(i) and p(j) of the
reconstructed attractor, which are initially only a
small ε apart, cannot grow further as Rtrε, where
Rtr is a given constant (see below). However, if
an i-th point has a close neighbor that does not
fulfill this criterion, then this i-th point is marked
as having a false nearest neighbor. We have to
minimize the fraction of points having a false
nearest neighbor by choosing a sufficiently large
embedding dimension m. If m is too small, two
points of the attractor may solely appear to be
close, whereas under forward iteration they are
be mapped randomly due to projection effects.
In order to calculate the fraction of false nearest
neighbors the following algorithm is used. Given a
point p(i) in the m-dimensional embedding space,
one first has to find a neighbor p(j), so that
‖p(i)−p(j)‖ ≤ ε, where ‖ . . . ‖ is the square norm
and ε is a small constant usually not larger than
the standard deviation of data. We then calculate
the normalized distance Ri between the (m + 1)-
st embedding coordinate of points p(i) and p(j)
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according to the equation:

Ri =
|xi+mτ − xj+mτ |
‖p(i)− p(j)‖ . (4)

If Ri is larger than a given threshold Rtr, then
p(i) is marked as having a false nearest neighbor.
Equation 4 has to be applied for the whole time
series and for various m = 1, 2, . . . until the
fraction of points for which Ri > Rtr is negligible.
According to Kennel et al. [20], Rtr = 10 has
proven to be a good choice for most data sets.
Results of the method for the temporal trace
in Fig. 1(e) are presented in Fig. 2. It can
be observed that the fraction of false nearest
neighbors (fnn) drops to zero convincingly at
m = 5.

1 2 3 4 5 6 7
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0.8

1.0
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n

m

FIG. 2. Calculation of the appropriate embedding
dimension m for the waveform presented in Fig. 1(e).
The fraction of false nearest neighbors (fnn) drops
convincingly to zero at m = 5.

We now have all at hand to calculate the
maximal Lyapunov exponent Λmax of the studied
waveform. We use quite an elaborate algorithm
developed by Wolf et al. [21] that implements the
theory in a very direct fashion. For each point
of the embedding space p(i) find a near neighbor
p(j), which satisfies the relation ‖p(i)−p(j)‖ ≤ ε.
Then iterate both points forward in time for a
fixed evolution time ν, which should be similar
to the embedding delay τ , but not much larger
than mτ . If the system is chaotic, the distance
after the evolved time ‖p(i+ ν)−p(j + ν)‖ = εν ,

will (on average) be larger than the initial ε,
while in case of regular behavior ε ≈ εν . After
each evolution ν a so-called replacement step is
attempted in which we look for a new point
p(k) in the embedding space, whose distance to
the evolved point p(i + ν) should be small (ε),
under the constraint that the angular separation
between the vectors constituted by the points
p(i + ν) & p(j + ν) and p(i + ν) & p(k) is small.
This procedure is repeated until the initial point
of the trajectory reaches the last one. Finally, the
maximal Lyapunov exponent can be calculated
according to the equation

Λmax =
1
nν

n∑

r=1

ln
εν

ε
, (5)

where n is the total number of replacement
steps. Depending on the parameters ε and
ν, the described algorithm yielding Λmax

converges nicely to a positive value, thus
allegedly supporting our temptation to declare
deterministic chaos in the waveform of a plucked
guitar chord. We encourage the reader to use
programs available from [14, 15] to verify this and
convince her/himself of the deceiving clearness of
the result.

If the treatment so far appeared consistent
and trustworthy our goal has been achieved, since
now the reader has a good motivation to continue
reading and discover the lesson to be learned. Of
course, much of the above-presented theory will
be used also in what follows so that the effort
invested so far will not go to waste.

First, it is necessary to diminish the
trustworthiness of so-far presented results, in
particular by lending support to the fact that
linear dynamics alone may also yield such
complex waveforms as presented in Fig. 1(e),
and thus may not necessarily represent chaotic
behavior. For this purpose, it is most elegant to
turn to previously published literature relating
to the (non)linearity in vibrating strings [13, 22–
27]. According to these studies, possible nonlinear
effects in freely vibrating strings include an
increase in resonant frequency upon increasing
the amplitude, skewed resonance curves that
reflect such effects, the generation of higher

Nonlinear Phenomena in Complex Systems Vol. 13, no. 1, 2010



76 Said Bešlagić and Matjaž Perc

harmonics [24], a transition from planar to
elliptically polarized transverse waves when
driven above a given threshold limit [22], and
the precession of such elliptical orbits when the
string is vibrating freely [24, 25]. However, as
pointed out already in those papers, such effects
are only significant at very large amplitudes and
are generally far too small to be inferred by
strings at normal tensions on stringed instruments
like the violin, cello or guitar [24], although
at certain conditions or a periodic external
driving a vibrating string may very well exhibit
chaotic behavior [28, 29]. Thus, in order for
our study to conform to previous findings, it
appears absolutely necessary to conduct further
research and elaborate on the behavior presented
in Fig. 1(e).

Since the level of sophistication in the above-
applied method for determining the maximal
Lyapunov exponent is quite high, and apparently
leading to essentially wrong results, it appears
reasonable to implement less elaborate methods.
An obvious and familiar candidate is the Fourier
transform [10]. However, since the waveform
of the guitar chord evidently incorporates
several harmonic and inharmonic frequencies
the resulting spectrum has, besides quite well-
defined peaks at best expressed frequencies,
also a continuous component, which overall
results in a transform that remarkably resembles
the ones obtained when analyzing so-called
intermittent chaotic regimes [10]. Thus, without
the information given in the preceding paragraph,
it would be difficult to make a definite assessment
of the behavior solely on the basis of the Fourier
transform (and even more so in view of the
maximal Lyapunov exponent obtained via the
algorithm of Wolf et al. [21]).

As the definite remedy, we propose to use
the simple and appealing graphical method of
recurrence plots [30]. Recurrent behavior is an
inherent property of periodic and to some extend
also chaotic systems. In particular, by periodic
behavior time-distinct states in the phase space
can be arbitrarily close, i.e. ‖p(i) − p(j)‖ = 0 if
times i and j differ exactly by some integer of the
oscillation period T , whereas for chaotic systems

FIG. 3. Recurrence plot analysis of the phase space
presented in Fig. 1(e) (reconstructed with τ = 70 and
m = 5) for ε = 0.01 (left) and ε = 0.03 (right). See
also the main text for details.

this distance is always finite. The recurrence plot
is a 2D square-grid graph with time units on both
axes, whereby, in the most common case, points
(i, j) that satisfy

‖p(i)− p(j)‖ < ε, (6)

where ‖ . . . ‖ is the square norm and ε is a small
constant determining the maximally allowed
distance between points in the reconstructed
phase space, are marked with black dots whilst
all others are left white. Remarkably, note that
the very same procedure is an integral part of
the false nearest neighbor method as well as the
algorithm for determining Λmax. Depending on
the application, there also exist many variations
of recurrence plots [31, 32], but presently the
above-outlined basic implementation will totally
suffice. In accordance with Eq. 6, it is evident that
each recurrence plot (no matter what the input
and the value of ε) will have a diagonal line along
the middle of the graph where i = j, since then
the condition given by Eq. 6 is trivially satisfied.
Following this reasoning, if one examines periodic
behavior the satisfaction of the condition i = j+T
(and equivalently j = i + T ), where T is the
oscillation period (in dimensionless units) of the
examined behavior, will yield additional diagonal
lines above and below the central diagonal line
starting at each multiple of T . Importantly, if the
behavior is truly periodic, all such diagonal lines
will be mostly (apart from minute interceptions
that might occur due to measurement error)
unbroken throughout the recurrence plot, and
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moreover, the position of the main diagonal
lines will not change when varying ε. On the
other hand, by chaotic behavior one can still
observe diagonal lines above and bellow the
central diagonal, but these are heavily scattered,
interrupted by isolated points, and perhaps most
importantly, do not occur every multiple of T due
to the lack of a precisely defined oscillation period,
but appear randomly throughout the recurrence
plot. Also, the outlay of a recurrence plot of
chaotic data will typically change when varying
ε. To see examples of recurrence plots obtained
for chaotic data sets please visit the Web page
of Norbert Marwan [32] where a large collection
is maintained and easily accessible. Presently,
we focus on the waveform of the studied guitar
chord presented in Fig. 1(e). The recurrence
plots presented in Fig. 3 can be obtained with
the program recurrplot.exe [14] where the main
input parameters are the previously determined
embedding delay τ = 70, embedding dimension
m = 5, and the value of ε. It is evident that
irrespective of ε the main diagonal lines, occurring
at each multiple of T (note that the lines are
equally separated), are largely unbroken and their
position remains unchanged. Of course, one has to
keep in mind the fact that we are still analyzing
real life recordings, which are always somewhat
burdened by measurement error, and also the
amplitude of the plucked strings decays minutely
during the time span of the studied recording;
thus ‖p(i) − p(i + T )‖ = 0 is unattainable.
However, the value of ε = 0.01 used for the left
panel of Fig. 3 represents only 1/100 of the total
interval spanned by the time series (note that
we have, for simplicity and easier comparisons,
rescaled all series to the unit interval), and thus
indicates that the temporal activity is repetitious
within a minute error margin that is far lower
than can be expected for chaotic systems. If
ε is increased the revealed main periodicity
remains unchanged, but also additional temporal
correlations can be identified. In sum, results
presented in Fig. 3 give ample evidence that the
waveform of the studied guitar chord is indeed
periodic, and as emphasized already in previous
works [24], is produced virtually exclusively by

the linear dynamics behind the mechanics of
freely vibrating strings at normal tensions on
stringed instruments like the violin, cello or
guitar. As such, the observed complexity of the
studied waveform is simply a consequence of the
superposition of the harmonic and inharmonic
frequencies emitted by each string and the body
of the instrument, which is, however, a purely
linear phenomenon and thus in accordance with
the theory of nonlinear dynamical systems [1–4]
strictly unable to produce chaotic behavior.

3. Summary

We analyze waveforms of increasingly
complex sounds with methods of time series
analysis, showing that the transition from
monotonous humming produced by a frequency
generator towards the sound of a guitar chord
is, despite the apparent emergence of irregular
chaotic behavior, adequately described by linear
dynamics alone, as such yielding periodic
temporal traces. Importantly, the obtained wrong
positive maximal Lyapunov exponent indeed
appears to be a consequence of the sophistication
behind the algorithm for calculating it, rather
than the complexity incorporated in the studied
time series. Although the possibility of such
pitfalls is often mentioned in books [9–11],
explicit examples are rarely given. Remarkably,
the cure against such spurious results can
be found basically by implementing a small
part of the algorithm for calculating Λmax

(at least in the present case, but most likely
the approach will work beautifully elsewhere
as well) in the form of a recurrence plot,
thus impressively demonstrating that it is
always wise to first implement simple algorithms
yielding clearly interpretable and traceable results
before attempting additional more sophisticated
investigations.

It is our hope that the study will find its
place also in graduate courses as an interesting
example of how observed complex behavior,
consisting of dozens of harmonic and inharmonic
frequencies, may not necessarily imply chaos, and
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moreover, how conceptually simple methods may
often yield better results in comparison to their
more elaborate counterparts. Finally, we would
like to note that methods of time series analysis
could be successfully applied also to other sounds,
such as human vocals or those produced by wind
instruments, thus providing a vast playground
enabling students to familiarize themselves with

basic features as well as pitfalls of the methods.
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Matjaž Perc is thankful for the support from
the Slovenian Research Agency (grant Z1-2032-
2547).

References

[1] H. G. Schuster, Deterministic chaos (VCH,
Weinheim, 1989).

[2] S. H. Strogatz, Nonlinear dynamics and chaos
(Addison-Wesley, Massachusetts, 1994).

[3] R. C. Hilborn, Chaos and nonlinear dynamics
(Oxford University Press, Oxford, 1994).

[4] D. T. Kaplan and L. Glass, Understanding
nonlinear dynamics (Springer, New York, 1995).

[5] K. Briggs, Am. J. Phys. 55, 1083 (1987).
[6] N. B. Tufillaro, T. A. Abbott, and J. P. Reilly,

An experimental approach to nonlinear dynamics
and chaos (Addison-Wesley, Massachusetts,
1992).

[7] T. Timberlake, Am. J. Phys. 72, 1002 (2004).
[8] L. E. Matson, Am. J. Phys. 75, 1114 (2007).
[9] H. D. I. Abarbanel, Analysis of observed chaotic

data (Springer, New York, 1996).
[10] H. Kantz and T. Schreiber, Nonlinear time

series analysis (Cambridge University Press,
Cambridge, 1997).

[11] J. C. Sprott, Chaos and time-series analysis
(Oxford University Press, Oxford, 2003).

[12] We note that the modes of a plucked guitar
string are not exactly higher harmonics of
the ground frequency because of the finite
rigidity of the string, and because the bridge
support transmitting energy to the body of the
instrument is not a perfect node. However, these
effects are currently not of vital importance, but
will be addressed briefly in the next section.

[13] C. Vallette, in Mechanics of musical instruments
edited by A. Hirschberg, J. Kergomard, and G.
Weinreich (Springer, New York, 1995), p. 115.

[14] Results presented in this paper can be
reproduced with programs that can be
downloaded from the Web page (Matjaž Perc)
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