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Noise enhances robustness of intracellular Ca2+ oscillations
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Abstract

We investigate responses of a model for intracellular Ca2+ oscillations to external pulsatile forcing in the presence of add
Gaussian noise. Our results show that noise makes the system less susceptible to external forcing and thus enhance
of Ca2+ oscillations. The results can be well explained by the local divergence of limit cycles in the phase space.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Reliable and immutable information processing
vital for flawless functioning of living organisms. On
of the key properties that assure such information fl
among cells is robustness. Therefore, mathema
models that describe biological systems have to
press robustness to various alterations, from param
changes to external disturbances [1,2]. Moreover,
bustness is considered important also in other field
dynamical system research. There exist many an
gies and similar motifs between biological signalli
pathways and electronics, where robustness of circ
to various external influences, like for example te
perature alterations, is found to be of crucial imp
tance [3,4]. Furthermore, in chained systems the p
lem of asymptotic stabilization and robustness to
ternal disturbances has recently also attracted m
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interest cf. [5]. Many studies were also devoted to
robustness of synchronised chaotic states [6–8].

Robustness of a system implies that a particu
system property, like for example frequency, amp
tude, type or shape of oscillations, is preserved
spite changes in the operating environment of the
tem. These changes in the operating environment
manifest either as shifts in system parameters, dif
ent initial conditions or external perturbations. Con
quently, there are several ways to define the robust
of a dynamical system, depending on the system p
erties that change, and how these changes are bro
about. A very common way to define robustness o
system is to determine a maximal parameter rang
which the qualitative behaviour of the system is n
altered, e.g., the system remains oscillating [1,9–
However, some authors examine the robustness
system in dependence on external disturbances [5

In the present Letter, we study the robustness
intracellular calcium signalling pathways to extern
perturbations. The study is carried out for a mathem
ical model that exhibits a broad variety in its dyna
.
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ics from simple to complex Ca2+ oscillations [12]. It
is well known that Ca2+ ions are one of the most im
portant second messengers, regulating many cel
processes from egg fertilization to cell death [13].
order to trigger these different cellular functions, c
cium has to play a multiplicity of roles, which require
precisely regulated information encoding of Ca2+ os-
cillations in their frequency [14–20] as well as in the
amplitude [21,22]. Therefore, it is of special impo
tance that mechanisms regulating these processe
robust, thereby assuring flawless functioning of livi
organisms. Previously, Kummer et al. [23] already
amined the robustness of a mathematical model
intracellular Ca2+ oscillations [24]. They found tha
bursting oscillations in their model are very unsusc
tible to various parameter changes, indicating a h
robustness of the system to changes in parameter
ues. In our work, we examine the robustness of C2+
oscillations in response to external perturbations.
this study, we use a simple well-defined square-sha
external pulsatile forcing, which enables a system
analysis of influences of the external forcing on
original signal. We are interested in changes of
form, amplitude and the frequency of Ca2+ oscilla-
tions caused by the external pulsatile forcing. In r
life, these changes of Ca2+ oscillations correspond t
altering particular information that is encoded by t
oscillation frequency and/or the amplitude of Ca2+
signals.

The focus of this Letter is to analyse the role
additive Gaussian noise in assuring the robustn
of the model system. The robustness of a partic
oscillatory regime is quantified by the relative part
the corresponding attractor (limit cycle) that rema
unaffected by the applied external perturbations.
positive effect of Gaussian noise on the robustnes
the model system is explained by the local diverge
of limit cycles in the phase space. In the discuss
the biological importance of the obtained results
discussed.

2. Mathematical model

We use a mathematical model for intracellu
Ca2+ oscillations, originally proposed by Marhl et a
[12]. The model consists of three basic model co
partments, i.e., the cytosol, the endoplasmic reticu
e

(ER), and the mitochondria (for details see [12]). Co
sequently, the three main variables are: free Ca2+ con-
centration in the cytosol (Cacyt), free Ca2+ concentra-
tion in the ER (Caer), and free Ca2+ concentration in
the mitochondria (Cam). The evolution of the mode
system is governed by the following differential equ
tions:

(1)

dCacyt

dt
= Jch − Jpump+ Jleak+ Jout

− Jin + JCaPr− JPr,

(2)
dCaer

dt
= βer

ρer
(Jpump− Jch − Jleak),

(3)
dCam

dt
= βm

ρm
(Jin − Jout),

where

(4)Jch = kch
Ca2

cyt

Ca2
cyt + K2

1

(Caer − Cacyt),

(5)Jpump= kpumpCacyt,

(6)Jleak= kleak(Caer − Cacyt),

(7)JPr = k+CacytPr,

(8)JCaPr= k−CaPr,

(9)Jin = kin
Ca8

cyt

Ca8
cyt + K8

2

,

(10)Jout =
(

kout
Ca2

cyt

Ca2
cyt + K2

1

+ km

)
Cam.

Concentrations of the free(Pr) and the occupied
(CaPr) protein binding sites are given by two cons
vation relations (see [12]):

(11)Pr = Prtot − CaPr,

(12)CaPr = Catot − Cacyt − ρer

βer
Caer − ρm

βm
Cam.

Additive Gaussian noise(ζ(t)) with standard de
viation σ = 0.367 and zero mean value is introduc
to the model system by adding the termβζ(t) to
Eqs. (1)–(3), whereβ is the noise intensity. All pa
rameter values are given in figure captions.

3. Results

We examine robustness of the model system
studying responses of the mathematical mode
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a well-defined external signal. The external forc
(Jforcing) is applied as a pulsatile Ca2+ flux through
the cell membrane, which has the form of a squa
shaped signal(f (t)):

(13)f (t) = a

{
1, if (t > tf ) and(t < tf + d)

0, else,

wherea is the amplitude of the forcing signal,tf is the
starting time of the pulse, andd is the pulse duration
The pulsatile Ca2+ flux through the cell membrane
taken into account by adding Eq. (13) to the terms
Eq. (1).

We apply the pulsatile forcing systematically in t
whole oscillation period of the basic Ca2+ oscillations
to determine the region in which the system rema
unaffected by the external signal. For the mo
system without inclusion of noise, an example
shown in Fig. 1, where the external forcing with t
amplitudea = 0.05 µM s−1 and the durationd = 3.0 s
is applied in two different parts of the oscillatio
period. Note that the forcing applied on the left si
of the dashed line does not evoke any effect, i.e.,
original course (thick solid line) remains unchang
(see Fig. 1(a)), whereas on the right side of the das
line the response is well expressed in form of a n
Cacyt spike (see Fig. 1(b)). Since the amplitude of
new spike is the same as the amplitude of the orig
spikes, it is reasonable to study only the freque
robustness of the system.

Fig. 1 shows that the oscillation period can be
duced down to the extend of the robust part on the
side of the dashed line. Therefore, the extend of the
bust part of the oscillation period determines the f
quency robustness. We define the robustness(R) of the
signal related to its frequency as a quotient betw
the time in which the system remains unaffected
the external forcing(tR) and the whole basic oscilla
tion period(t0):

(14)R = tR

t0
.

In general, for non-deterministic oscillations, wh
noise is applied to the system, the robustness(R) is
defined by the average values oftR andt0:

(15)R = 〈tR〉
〈t0〉 .

The average, i.e., the predominant oscillation per
(〈t0〉) for a givenβ can be obtained by calculatin
the power spectra of non-deterministic oscillations a
applying the equation

(16)〈t0〉 = f −1
P ,

wherefP is the frequency at which the basic pe
value in power spectra occurs. Furthermore,〈tR〉 can
be obtained by calculatingtR for several oscillation
cycles until a statistically stable average value
gained.

We have calculated the robustness(R) for various
levels of the noise intensity(β) and for different
amplitudes of the forcing signal(a). Results are
presented in Fig. 2. It can be well observed t
the robustness of Ca2+ oscillations increases by th
increasing noise intensity(β). Importantly, this resul
does not depend on the amplitude of the exte
perturbation(a). Of course, for larger values ofa, thus
stronger external forcing, the original time course
altered in a wider part of the oscillation period th
for smaller values ofa (see Fig. 2). This result i
not surprising, since a stronger external perturba
is more likely to affect the original signal.

To explain the results, showing that noise enhan
the robustness of Ca2+ oscillations to external pertu
bations, we calculate the time course of the local
vergence for the corresponding attractors. If nam
an attractor in form of a limit cycle that corresponds
oscillations of cytosolic calcium in the cell is weak
attractive, i.e., has a close to zero local divergenc
can much easier adapt its shape, thus an alteratio
the original time course due to external forcing is m
likely to occur (the system is more flexible, see [25
On the other hand, the trajectory in regions with hig
negative local divergence has a strong well-defi
immutable path in the phase space. Consequentl
these strong attractive areas, it is much more diffic
to alter the shape of an attractor and therefore the
bustness of the system is very high. Thus, the inv
tigation of interrelation between the local divergen
and the robustness of the oscillator seems to be rea
able. We determine the local divergence for the ve
field:

F(Cacyt,Caer,Cam) = (FCacyt,FCaer,FCam)

(17)=
(

dCacyt

dt
,

dCaer

dt
,

dCam

dt

)
,
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Fig. 1. Responses of the regular oscillatory regime at:kleak = 0.05 s−1, kpump = 20.0 s−1, kin = 300 µMs−1, kout = 125 s−1,

km = 0.00625 s−1, k+ = 0.1 µM−1 s−1, k− = 0.01 s−1, K1 = 5.0 µM, K2 = 0.8 µM, Catot = 90 µM, Prtot = 120 µM, ρer = 0.01,
βer = 0.0025,ρm = 0.01, βm = 0.0025, kch = 495 s−1 to the external forcing (Jforcing, a = 0.02 µMs−1, d = 3.0 s): (a) time course o
Cacyt (thick solid line) remains unaffected by the external forcingJforcing (doted line) if the pulse is applied in the robust part of the oscillat
period (left side of the dashed line), (b) time course ofCacyt (thick solid line) is altered (thin solid line) by the external forcingJforcing (doted
line) if the pulse is applied in the non-robust, susceptible part of the oscillation period (right side of the dashed line).
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according to the definition:

∇ · F(Cacyt,Caer,Cam)

(18)= ∂FCacyt

∂Cacyt
+ ∂FCaer

∂Caer
+ ∂FCam

∂Cam
,

where (Cacyt,Caer,Cam) is a point of the limit cycle.
We calculate time courses of the local divergen

for the oscillatory regime presented in Fig. 1. Resu
for the reference case, without adding noise, as we
examples for three different noise intensities(β) are
shown in Fig. 3. Forβ > 0 typical traces are presente
i.e., traces with the oscillation frequency at which t
main peak value in power spectra occurs for a gi
β . It can be well observed that for increasing no
intensity (largerβ) the sensitive parts of the attracto
characterised by the close to zero local divergen
are cut off (see insert of Fig. 3). Therefore, w
increasing noise intensity the attractor (limit cyc
becomes stronger attractive, i.e., the system beco
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n of

. 1.
Fig. 2. Robustness of the system in dependence on the noise intensity(β) for various amplitudes of the external signal(a). Solid line, dashed
line and doted line stand fora = 0.1 µMs−1, a = 0.05 µMs−1, anda = 0.01 µMs−1, respectively. For other parameter values see captio
Fig. 1.

Fig. 3. Time courses of the local divergence for one oscillation period at various noise intensities(β). For parameter values see caption of Fig
d.
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Consequently, by increasing the noise intensity,
external forcing can alter an ever-smaller part of
oscillation period, thus the robustness of the sys
increases with increasing noise intensity.

In Fig. 3, it can be well observed that cuttin
off the flexible parts of attractors by noise results
reducing the oscillation period〈t0〉. To analyse this
more systematically, we separately show〈t0〉 and〈tR〉
in dependence onβ . Fig. 4 shows that〈t0〉 shortens
continuously with increasingβ , whereas the time in
which the system remains unaffected by the exte
forcing 〈tR〉 remains nearly the same for all noi
intensities. According to our definition ofR, given by
Eq. (15), the robustness of the system increases
increasing noise intensity, as presented in Fig. 2.

4. Discussion

In this Letter, we investigated effects of additi
Gaussian noise on robustness of Ca2+ oscillations. For
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r
Fig. 4. Time courses of〈t0〉 (solid line) and〈tR〉 (dashed line) in dependence on the noise intensity(β) for a = 0.1 µMs−1. For other paramete
values see caption of Fig. 1.
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the studied model [12], we found that noise redu
the system susceptibility for external pulsatile forcin
thus enhances the robustness of intracellular C2+
oscillations. It should be pointed out that the resu
are independent of the choice of the amplitude of
forcing signal (see Fig. 2).

We explain the obtained results with the loc
divergence, which represents the attractive prope
of limit cycles in the phase space. The local diverge
has been previously used for analysing the flexibi
of Ca2+ oscillations in response to external period
forcing [25]. In the present study, we found that
applying additive Gaussian noise to the system,
sensitive areas of attractors, characterised by c
to zero local divergence, are cut off, while the rig
non-susceptible parts of the attractor are prese
(see Fig. 3). Consequently, by increasing the no
intensity, the external forcing can alter an ever-sma
part of the oscillation period, i.e., the robustness of
system increases with increasing noise intensity.

Moreover, it should be pointed out that noise p
dominantly enhances the frequency robustness o
system, thereby assuring robust frequency encodin
information [14–20]. On the other hand, the amplitu
robustness of the system is largely unaffected by no
For excitable systems such as, for example, studie
this Letter, this is a characteristic system property
the model, oscillations appear via hard excitation [
characterized by predominantly constant amplitu
in a larger part of the corresponding bifurcation d
gram (cf. [17]). This property is also manifested in t
time course of the local divergence, which is high
negative at the time the spike occurs, thereby mak
it virtually impossible for an external signal to alter t
system’s behaviour at this point.

From the biological point of view, the obtained r
sults are of special importance. In a living enviro
ment, there are many external influences to wh
a biological system has to respond selectively [2
Accordingly, mechanisms that are essential for
ing cells have to be able to filter relevant sign
from the background successfully [28]. Thus, for Ca2+
signalling pathways, for example, only biologica
significant signals have to be recognised and fur
transmitted, while others have to be ignored by
cell. For such a reliable and convincing signal tra
duction, the cell must have a well-defined threshold
which it responds to an external signal. In the pres
study, we showed that noise actively participates
forming the threshold level. In particular, for high
noise intensities the threshold level is shifted high
whereas for weaker noise the system is able to
spond to weaker signals. With a higher threshold le
the confusion with other unreliable weak signals fro
the environment is avoided. Thereby, our study p
vides new evidences for a constructive role of nois
the cellular level. This considerably contributes to p
vious studies analysing the constructive role of no
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in biological systems, like, for example, the noise
duced synchronisation of Ca2+ oscillations [29], sto-
chastic resonance [30–32], and noise enhanced s
transduction [33].

In further studies, it would be interesting to inves
gate robustness in relation to other dynamical sys
properties, like, for example, sensitivity and flexib
ity of oscillatory regimes. In particular, it is of speci
interest to clarify, whether the higher robustness of
system can only be achieved by reducing its flexibil
From the evolutionary point of view, it seems reaso
able that in biological systems a compromise betw
sensitivity, flexibility, and robustness is assured.
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