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Abstract

We investigate responses of a model for intracellulaCascillations to external pulsatile forcing in the presence of additive
Gaussian noise. Our results show that noise makes the system less susceptible to external forcing and thus enhances robustne
of Ca&¢t oscillations. The results can be well explained by the local divergence of limit cycles in the phase space.
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1. Introduction interest cf. [5]. Many studies were also devoted to the
robustness of synchronised chaotic states [6—8].

Reliable and immutable information processing is Robustness Ofl_?( s¥stem |mp|I|e? that a part|cu:§1r
vital for flawless functioning of living organisms. One ~ SYStém propert%, ke for e)(_ﬁm,pe requency, ampii-
of the key properties that assure such information flow {d€: type or shape of oscillations, is preserved de-
among cells is robustness. Therefore, mathematical SP/t€ €hanges in the operating environment of the sys-
models that describe biological systems have to ex- tem..Thesg changes n the operating enwronmen_t can
press robustness to various alterations, from parameterManifest either as shifts in system parameters, differ-
changes to external disturbances [1,2]. Moreover, ro- ent initial conditions or external perturbations. Conse-
bustness is considered important also in other fields of dUently, there are several ways to define the robustness
dynamical system research. There exist many analo—Of a dynamical system, depending on the system prop-
gies and similar motifs between biological signalling ©€"€S that change, and how these changes are brought
pathways and electronics, where robustness of circuits 200Ut: A ver)écommon way to de1|‘|ne robustness of a
to various external influences, like for example tem- sy;tem Is to e_terrmne a maxima parameter range in
perature alterations, is found to be of crucial impor- Which the qualitative behaviour of the system is not

tance [3,4]. Furthermore, in chained systems the prob- altered, e.g., the system remains oscillating [1,9-11].
lem of asymptotic stabilization and robustness to ex- HOWever, some authors examine the robustness of a

ternal disturbances has recently also attracted muchSYStem in dependence on external disturbances [5].
In the present Letter, we study the robustness of
intracellular calcium signalling pathways to external
" Corresponding author. perturbations. The study is carried out for a mathemat-
E-mail address: marko.marhl@uni-mb.si (M. Marhl). ical model that exhibits a broad variety in its dynam-
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ics from simple to complex G4 oscillations [12]. It
is well known that C&" ions are one of the most im-
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(ER), and the mitochondria (for details see [12]). Con-
sequently, the three main variables are: fre&"Gzon-

portant second messengers, regulating many cellularcentration in the cytosoldacy), free ca&t concentra-

processes from egg fertilization to cell death [13]. In
order to trigger these different cellular functions, cal-
cium has to play a multiplicity of roles, which requires
precisely regulated information encoding of?Cas-

cillations in their frequency [14—20] as well as in their
amplitude [21,22]. Therefore, it is of special impor-

tance that mechanisms regulating these processes are

tion in the ER Caer), and free C&" concentration in
the mitochondriaCay). The evolution of the model
system is governed by the following differential equa-
tions:

dCacyt

= Jeh — Jpump+ Jieak + Jout

robust, thereby assuring flawless functioning of living = Jin & Jeapr= Jer (1)
organisms. Previously, Kummer et al. [23] already ex- % _ @(1 — Jeh — Jieal) )
amined the robustness of a mathematical model for df Per pamp= ¢ e
intracellular C&* oscillations [24]. They found that ~ dCam _ Bm Fo_ ] 3
bursting oscillations in their model are very unsuscep-  dr p_m( in = Joud, @)
tible to various parameter changes, indicating a high ,here
robustness of the system to changes in parameter val- )
ues. In our work, we examine the robustness of'Ca Cagyt

N . ! . Jeh= kchziz(caer — Cagyt), 4)
oscillations in response to external perturbations. For Cagy + K
this study, we use a S|r_nple ngl-deflned square—shapgd Joump= kpumeCacyt, (5)
external pulsatile forcing, which enables a systematic
analysis of influences of the external forcing on the leak= kieak(Caer — Cacyt), (6)
original signal. We are interested in changes of the Jpr= k4 CacytPr, (7
form, amplitude and the frequency of €aoscilla- Japr= k_CaPr, 8)
tions caused by the external pulsatile forcing. In real 3
life, these changes of &4 oscillations correspond to Jin = kin Cagyt 9)
altering particular information that is encoded by the cal,+ K3’
oscillation frequency and/or the amplitude of ‘ta Caﬁ
signals. Jout= (koutziytz + km) Cam. (10)

The focus of this Letter is to analyse the role of Cagy + K7

additive Gaussian noise in assuring the robustnessconcentrations of the fre¢Pr) and the occupied

of the model system. The robustness of a particular (capr) protein binding sites are given by two conser-
oscillatory regime is quantified by the relative part of yation relations (see [12]):
the corresponding attractor (limit cycle) that remains

unaffected by the applied external perturbations. The Pr = Prit — CaPr, (11)
positive effect of Gaussian noise on the robustness of capr = Cayo; — Cagyt — P Caer — P can. (12)
the model system is explained by the local divergence Ber Bm

of limit cycles in the phase space. In the discussion,  Additive Gaussian noiséz (r)) with standard de-

the biological importance of the obtained results is viation ¢ = 0.367 and zero mean value is introduced

discussed. to the model system by adding the terfg(z) to
Egs. (1)-(3), where is the noise intensity. All pa-
rameter values are given in figure captions.

2. Mathematical model

We use a mathematical model for intracellular 3. Results
Cc&* oscillations, originally proposed by Marhl et al.
[12]. The model consists of three basic model com-  We examine robustness of the model system by
partments, i.e., the cytosol, the endoplasmic reticulum studying responses of the mathematical model to
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a well-defined external signal. The external forcing the power spectra of non-deterministic oscillations and
(Jrorcing) is applied as a pulsatile &4 flux through applying the equation
the cell membrane, which has the form of a square-

shaped signalf (¢)): (to) = ;1, (16)
f)=a { é gét; tpyand( <ty +d (13) where fp is the frequency at which the basic peak

value in power spectra occurs. Furthermdrg) can
whereq is the amplitude of the forcing signal isthe  pe obtained by calculating; for several oscillation
starting time of the pulse, antlis the pulse duration.  cycles until a statistically stable average value is
The pulsatile C&" flux through the cell membrane is gained.
taken into account by adding Eq. (13) to the terms in  \We have calculated the robustng®y for various
Eq. (1). levels of the noise intensityg) and for different
We apply the pulsatile forcing systematically inthe amplitudes of the forcing signala). Results are
whole oscillation period of the basic €aoscillations presented in F|g 2. It can be well observed that
to determine the region in which the system remains the robustness of €& oscillations increases by the
unaffected by the external signal. For the model increasing noise intensitys). Importantly, this result
system without inclusion of noise, an example is does not depend on the amplitude of the external
shown in Fig. 1, where the external forcing with the perturbatior(a). Of course, for larger values of thus
amplitudes = 0.05 uM s and the duratiod =3.0's stronger external forcing, the original time course is
is applied in two different parts of the oscillation ajtered in a wider part of the oscillation period than
period. Note that the forcing applied on the left side for smaller values ofz (see Fig. 2). This result is
of the dashed line does not evoke any effect, i.e., the not surprising, since a stronger external perturbation
original course (thick solid line) remains unchanged is more likely to affect the original signal.
(see Fig. 1(a)), whereas on the right side of the dashed  To explain the results, showing that noise enhances
line the response is well expressed in form of a new the robustness of G4 oscillations to external pertur-
Cacyt spike (see Fig. 1(b)). Since the amplitude of the bations, we calculate the time course of the local di-
new spike is the same as the amplitude of the original vergence for the corresponding attractors. If namely
spikes, it is reasonable to study only the frequency an attractor in form of a limit cycle that corresponds to
robustness of the system. oscillations of cytosolic calcium in the cell is weakly
Fig. 1 shows that the oscillation period can be re- attractive, i.e., has a close to zero local divergence, it
duced down to the extend of the robust part on the left can much easier adapt its Shape, thus an alteration of
side of the dashed line. Therefore, the extend of the ro- the original time course due to external forcing is more
bust part of the oscillation period determines the fre- |ikely to occur (the system is more flexible, see [25]).
quency robustness. We define the robustoRssf the On the other hand, the trajectory in regions with highly
signal related to its frequency as a quotient between negative local divergence has a strong well-defined
the time in which the system remains unaffected by jmmutable path in the phase space. Consequently, in
the external forcingzg) and the whole basic oscilla-  these strong attractive areas, it is much more difficult
tion period(to): to alter the shape of an attractor and therefore the ro-
R bustness of the system is very high. Thus, the inves-
R= o (14) tigation of interrelation between the local divergence
and the robustness of the oscillator seems to be reason-

In general, for non-deterministic oscillations, when | o the local di tor th
noise is applied to the system, the robustn@@sis able. We determine the local divergence for the vector

defined by the average valuesrgfandr: field:
t
k= % (15)  F(Cacyt, Caer, Cam) = (Fcay: Fcae Fcan)
0
The average, i.e., the predominant oscillation period ~ — (dCacyt, dCaer dCam) an
({(r0)) for a givenpB can be obtained by calculating dr dt dt
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Fig. 1. Responses of the regular oscillatory regime kafak = 0.05 71, kpump = 200 71, kin = 300 pMs L, kout = 125 s,

km = 0.00625 s1, ky =01 pM~1s71 k_ =001 s1, kK1 =50 pM, K» = 0.8 pM, Cagot = 90 UM, Priot = 120 UM, per = 0.01,

Ber = 0.0025, pm = 0.01, fm = 0.0025, ke = 495 s1 to the external forcing korcing, a = 0.02 pMs™1, @ = 3.0 s): (a) time course of
Cagyt (thick solid line) remains unaffected by the external forciigcing (doted line) if the pulse is applied in the robust part of the oscillation
period (left side of the dashed line), (b) time cours€agyt (thick solid line) is altered (thin solid line) by the external forcisgycing (doted
line) if the pulse is applied in the non-robust, susceptible part of the oscillation period (right side of the dashed line).

according to the definition: examples for three different noise intensitigh are
shown in Fig. 3. FoB > 0 typical traces are presented,
V - F(Cagyt, Caer, Cam) i.e., traces with the oscillation frequency at which the
OFCaey  3Fca, = 0Fcapy main peak value in power spectra occurs f(_3r a gi\_/en
= 3Cac 9Cac 9Cam (18) B. It can be well observed that for increasing noise
n ' intensity (largerg) the sensitive parts of the attractor,
where Cagyt, Caer, Cam) is a point of the limit cycle. characterised by the close to zero local divergence,

We calculate time courses of the local divergence are cut off (see insert of Fig. 3). Therefore, with
for the oscillatory regime presented in Fig. 1. Results increasing noise intensity the attractor (limit cycle)
for the reference case, without adding noise, as well as becomes stronger attractive, i.e., the system becomes
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Fig. 2. Robustness of the system in dependence on the noise intg#sfty various amplitudes of the external sigria). Solid line, dashed
line and doted line stand for=0.1 pMs1, ¢ = 0.05 pMs1, anda = 0.01 pMs™1, respectively. For other parameter values see caption of
Fig. 1.

100 y T . 1 . . ; . . . i : .
I £=0.1uMs” £=0pMs”

75 p\ ]
I £1=0.05uMs” £#=0.01uMs "

o ~ -
L \

Local Divergence (s")
&

.50 - 15 sensitive part =
10
-75 F 5 |
B A :
-100 + “
- 5 -
375 | s 0 Zs a0 | | ll T
450 I L 1 L 1 . 1 . 1 L 1 .
50 100 150 200 250 300 350

t(s)

Fig. 3. Time courses of the local divergence for one oscillation period at various noise inteifsitiesr parameter values see caption of Fig. 1.

rigid in a broader part of the oscillation period. which the system remains unaffected by the external
Consequently, by increasing the noise intensity, the forcing (tg) remains nearly the same for all noise
external forcing can alter an ever-smaller part of the intensities. According to our definition @&, given by
oscillation period, thus the robustness of the system Eq. (15), the robustness of the system increases with
increases with increasing noise intensity. increasing noise intensity, as presented in Fig. 2.

In Fig. 3, it can be well observed that cutting
off the flexible parts of attractors by noise results in
reducing the oscillation periodtp). To analyse this 4. Discussion
more systematically, we separately shiawy and(tg)
in dependence of. Fig. 4 shows thatry) shortens In this Letter, we investigated effects of additive
continuously with increasing, whereas the time in  Gaussian noise on robustness ofCascillations. For
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Fig. 4. Time courses dfg) (solid line) and(rr) (dashed line) in dependence on the noise interigifyfor « = 0.1 uM s~1. For other parameter
values see caption of Fig. 1.

the studied model [12], we found that noise reduces in a larger part of the corresponding bifurcation dia-
the system susceptibility for external pulsatile forcing, gram (cf. [17]). This property is also manifested in the
thus enhances the robustness of intracellulaf"Ca time course of the local divergence, which is highly
oscillations. It should be pointed out that the results negative at the time the spike occurs, thereby making
are independent of the choice of the amplitude of the it virtually impossible for an external signal to alter the
forcing signal (see Fig. 2). system’s behaviour at this point.

We explain the obtained results with the local From the biological point of view, the obtained re-
divergence, which represents the attractive propertiessults are of special importance. In a living environ-
of limit cycles in the phase space. The local divergence ment, there are many external influences to which
has been previously used for analysing the flexibility a biological system has to respond selectively [27].
of C&* oscillations in response to external periodic Accordingly, mechanisms that are essential for liv-
forcing [25]. In the present study, we found that by ing cells have to be able to filter relevant signals
applying additive Gaussian noise to the system, the from the background successfully [28]. Thus, for€a
sensitive areas of attractors, characterised by closesignalling pathways, for example, only biologically
to zero local divergence, are cut off, while the rigid, significant signals have to be recognised and further
non-susceptible parts of the attractor are preservedtransmitted, while others have to be ignored by the
(see Fig. 3). Consequently, by increasing the noise cell. For such a reliable and convincing signal trans-
intensity, the external forcing can alter an ever-smaller duction, the cell must have a well-defined threshold, at
part of the oscillation period, i.e., the robustness of the which it responds to an external signal. In the present
system increases with increasing noise intensity. study, we showed that noise actively participates in

Moreover, it should be pointed out that noise pre- forming the threshold level. In particular, for higher
dominantly enhances the frequency robustness of thenoise intensities the threshold level is shifted higher,
system, thereby assuring robust frequency encoding of whereas for weaker noise the system is able to re-
information [14—20]. On the other hand, the amplitude spond to weaker signals. With a higher threshold level,
robustness of the system is largely unaffected by noise. the confusion with other unreliable weak signals from
For excitable systems such as, for example, studied inthe environment is avoided. Thereby, our study pro-
this Letter, this is a characteristic system property. In vides new evidences for a constructive role of noise at
the model, oscillations appear via hard excitation [26] the cellular level. This considerably contributes to pre-
characterized by predominantly constant amplitudes vious studies analysing the constructive role of noise
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in biological systems, like, for example, the noise in-
duced synchronisation of €4 oscillations [29], sto-

chastic resonance [30—32], and noise enhanced signa

transduction [33].
In further studies, it would be interesting to investi-

gate robustness in relation to other dynamical system

properties, like, for example, sensitivity and flexibil-
ity of oscillatory regimes. In particular, it is of special

interest to clarify, whether the higher robustness of the

system can only be achieved by reducing its flexibility.
From the evolutionary point of view, it seems reason-
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