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If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for 
the common good? Recent research indicates that a comprehensive answer to such questions requires 
that we look beyond the individual and focus on the collective behavior that emerges as a result of the 
interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and 
cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. 
Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase 
transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary 
outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics 
systems, interactions among humans often involve group interactions, and they also involve a larger 
number of possible states even for the most simplified description of reality. Here we briefly review 
research done in the realm of the public goods game, and we outline future research directions with an 
emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium 
statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer 
better social systems and develop more efficient policies for a sustainable and better future.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The human race is remarkable in many ways. We are cham-
pions of cooperation [1]. We sacrifice personal benefits for the 
common good, we work together to achieve what we are un-
able to achieve alone, we are compassionate, and we are social. 
And through this cooperation, we have had astonishing evolution-
ary success. We have conquered our planet, and today there is 
an abundance of technological breakthroughs and innovations that 
make our lives better. At the same time, our societies are home to 
millions that live on the edge of existence. We deny people shel-
ter, we deny people food, and we deny people their survival. We 
still need to learn how to cooperate better with one another. The 
problem, however, is that to cooperate more or better, or even to 
cooperate at all, is in many ways unnatural. Cooperation is costly, 
and exercising it can weigh heavily on individual wellbeing and 
prosperity. If only the fittest survive, why should one perform an 
altruistic act that is costly to perform but benefits another? Why 
should we care for and contribute to the public good if freerid-
ers can enjoy the same benefits for free? Since intact cooperation 
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forms the bedrock of our efforts for a sustainable and better fu-
ture, understanding cooperative behavior in human societies has 
been declared as one of the grand scientific challenges of the 21st 
century [2].

In the past, Hamilton’s kin selection theory has been applied 
prolifically to solve the puzzle of cooperation among simpler or-
ganisms [3], resting on the fact that by helping a close relative to 
reproduce still allows indirect passing of the genes to the next gen-
eration. Ants and bees, for example, are famous for giving up their 
own reproductive potential to support that of the queen [4]. Birds 
do cooperative breeding that prompts allomaternal behavior where 
helpers take care for the offspring of others [5]. Microorganisms 
also cooperate with each other by sharing resources and joining 
together to form biofilms [6]. But in nature cooperation is com-
mon not only between relatives. And this seems to be all the more 
true the more intelligent an organism is. Higher mammals, and hu-
mans in particular, are in this respect at the top of the complexity 
pyramid where one can distinguish a vast variety of prosocial and 
antisocial behavior.

Accordingly, many other mechanisms have been identified that 
promote cooperation, most famous being direct and indirect reci-
procity as well as group selection [7]. Network reciprocity [8] has 
recently also attracted considerable attention in the physics com-
munity, as it became clear that methods of nonequilibrium statis-
tical physics can inform relevantly on the outcome of evolutionary 
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games in structured populations [9–13]. While the basic idea be-
hind network reciprocity is simple — cooperators do better if they 
are surrounded by other cooperators — the manifestation of this 
fact and the phase transitions leading to it depend sensitively on 
the structure of the interaction network and the type of interac-
tions, as well as on the number and type of competing strategies.

While the infusion of statistical physics to this avenue of re-
search is still a relatively recent development, evolutionary game 
theory [14] is long established as the theory of choice for study-
ing the evolution of cooperation among selfish individuals, in-
cluding humans [15]. Competing strategies vie for survival and 
reproduction through the maximization of their utilities, which 
are traditionally assumed to be payoffs that are determined by 
the definition of the contested game. The most common assump-
tion underlying the evolution in structured populations has been 
that the more successful strategies are imitated and thus spread 
based on their success in accruing the highest payoffs. Mutation 
has also been considered prominently, in that it can reintroduce 
variation into the population or represent cultural evolution and 
social learning, in which people imitate those with higher payoffs 
and sometimes experiment with new strategies. Evolutionary dy-
namics based on these basic principles has been considered as the 
main driving force of evolution, reflecting the individual struggle 
for success and the pressure of natural selection.

Undoubtedly, traditional evolutionary game theory, as briefly 
outlined above, has provided fundamental models and methods 
that enable us to study the evolution of cooperation, and research 
along these lines continues to provide important proof-of-principle 
models that guide and inspire future research. But the complexity 
of such systems also requires methods of nonequilibrium statis-
tical physics be used to better understand cooperation in human 
societies, and to reveal the many hidden mechanisms that pro-
mote it. In the continuation, we first present the public goods 
game on the square lattice as the null model of human cooper-
ation [16]. We then proceed with representative extensions of the 
game involving punishment [17] and correlated positive and nega-
tive reciprocity [18], which deliver fascinating examples of phase 
transitions in the realm of this research. We conclude with an 
overview of important progress made in related fields, and we 
outline possible directions for future research in the realm of sta-
tistical physics of evolutionary games.

2. The null model

The public goods game is simple and intuitive. In a group of 
players, each one can decide whether to cooperate or defect. Co-
operators contribute c = 1 to the common pool, while defectors 
contribute nothing. The sum of all contributions is multiplied by 
a multiplication factor r > 1, which takes into account synergistic 
effects of cooperation. In particular, there is an added value to a 
joint effort that is often more than just the sum of individual con-
tributions. After the multiplication, the resulting amount of public 
goods is divided equally amongst all group member, irrespective 
of their strategy. In a group g containing G players the resulting 
payoffs are thus

�
g
C = r(NC + 1)/G − 1 (1)

�
g
D = rNC /G, (2)

where NC is the number of cooperators around the player for 
which the payoff is calculated. Evidently, the payoff of a defec-
tor is always larger than the payoff of a cooperator, if only r < G . 
With a single parameter, the public goods game hence captures the 
essence of a social dilemma in that defection yields highest short-
term individual payoffs, while cooperation is optimal for the group, 
and in fact for the society as a whole. If nobody cooperates public 
goods vanish and we have the tragedy of the commons [19].

In a well-mixed population, where groups are formed by select-
ing players uniformly at random, r = G is a threshold that marks 
the transition between defection and cooperation. If players imitate 
strategies of their neighbors with a higher payoff, then for r < G
everybody defects, while for r > G everybody in the population 
cooperates. Interactions among humans, however, are seldom ran-
dom, and it is therefore important for the null model to take this 
into account. The square lattice is among the simplest of networks 
that one can consider. Notably, previous research has shown that 
for games governed by group interactions using the square lattice 
suffices to reveal all feasible evolutionary outcomes, and moreover, 
that these are qualitatively independent of the details of the inter-
action structure [11].

For simplicity but without loss of generality, let the public 
goods game thus be staged on a square lattice with periodic 
boundary conditions where L2 players are arranged into overlap-
ping groups of size G = 5 such that everyone is connected to 
its G − 1 nearest neighbors. The microscopic dynamics involves 
the following elementary steps. First, a randomly selected player 
x with strategy sx plays the public goods game with its G − 1
partners as a member of all the g = 1, . . . , G groups where it is 
member, whereby its overall payoff �sx is thus the sum of all 
the payoffs �g

sx acquired in each individual group. Next, player x
chooses one of its nearest neighbors at random, and the chosen 
co-player y also acquires its payoff �sy in the same way. Finally, 
player y imitates the strategy of player x with a probability given 
by the Fermi function

W (sx → sy) = 1

1 + exp[(�sy − �sx)/K ] , (3)

where K quantifies the uncertainty by strategy adoptions [16]. In 
the K → 0 limit, player y copies the strategy of player x if and 
only if �sx > �sy . Conversely, in the K → ∞ limit, payoffs cease
to matter and strategies change as per flip of a coin. Between these 
two extremes players with a higher payoff will be readily imitated, 
although under-performing strategies may also be adopted, for ex-
ample due to errors in the decision making, imperfect information, 
and external influences that may adversely affect the evaluation 
of an opponent. Repeating these elementary steps L2 times con-
stitutes one full Monte Carlo step (MCS), which gives a chance to 
every player to change its strategy once on average.

This null model — the spatial public goods game — has been 
studied in detail in [16], where it was shown that for K = 0.5
cooperators survive only if r > 3.74, and they are able to defeat 
defectors completely for r > 5.49. Both the D → C + D and the 
C + D → D phase transition are continuous. Subsequently, the im-
pact of critical mass [20], i.e., the evolution of cooperation under 
the assumption that the collective benefits of group membership 
can only be harvested if the fraction of cooperators within the 
group exceeds a threshold value, and the effects of different group 
sizes [21], have also been studied in the realm of this two-strategy 
spatial public goods game.

In general, it is important that in structured populations, due 
to network reciprocity, cooperators are able to survive at multipli-
cation factors that are well below the r = G limit that applies to 
well-mixed populations. The r > 3.74 threshold for cooperators to 
survive on the square lattice can be considered as a benchmark 
value, below and above which we have harsh and lenient condi-
tions for the evolution of public cooperation, respectively.

3. Public goods game with punishment

Despite ample cooperation in human societies [1], and despite 
our favorable predispositions for prosocial behavior that are likely 
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Fig. 1. Full fine–cost (β–γ ) phase diagram, as obtained for r = 3.8 and K = 0.5. 
Solid red line denotes continuous phase transitions, while dashed blue line denotes 
discontinuous phase transitions. Different phases are denoted by the symbols of the 
strategies that survive in the stationary state. Inset shows the overall fraction of 
both cooperative strategies (ρC+P ) in dependence on the fine β , as obtained for 
punishment costs γ = 0.1, 0.3, and 0.65 from left to right. Similar phase diagrams 
can be obtained for smaller values of r, where, however, only strategy D survives at 
small values of the punishment fine. We recall that r = 3.74 is the benchmark value 
beyond which a mixed C + D phase is stable in the null model without punishment. 
These results are reproduced with permission from [17]. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

rooted in difficulties of our pre-human ancestors in rearing off-
spring that survived [22], cooperation today is still subject to both 
positive and negative incentives [23]. Positive incentives typically 
entail rewards for behaving prosocially, while negative incentives 
typically entail punishing free-riding [24]. However, just like public 
cooperation incurs a cost for the wellbeing of the common good, 
so does the provisioning of rewards or sanctions incur a cost for 
the benefit or harm of the recipients. Individuals that abstain from 
dispensing such incentives therefore become second-order freerid-
ers [25], and they are widely believed to be amongst the biggest 
impediments to the evolutionary stability of rewarding and pun-
ishing.

The null model introduced above can be easily upgraded to 
account for positive and negative incentives. Cooperators that pun-
ish defectors (sx = P ), for example, can be introduced as the 
third competing strategy. In this case, both cooperative strategies 
(C and P ) contribute c = 1 to the common pool, while defectors 
contribute nothing. Moreover, a defector is fined with β/(G − 1)

from each punishing cooperator within the group, which in turn 
requires each punisher to bear the cost γ /(G − 1) for each defec-
tor that is punished. A defector thus suffers the maximal fine β if 
it is surrounded solely by punishers [N P = G − 1 in Eq. (4)], while 
a lonely punisher bears the largest cost γ if it is surrounded solely 
by defectors [ND = G −1 in Eq. (6)]. In agreement with these rules, 
the payoff values of the three competing strategies obtained from 
each group g are

�
g
D = R(NC + N P )/G − βN P /(G − 1), (4)

�
g
C = R(NC + N P + 1)/G − 1, (5)

�
g
P = R(NC + N P + 1)/G − 1 − γ ND/(G − 1) (6)

where Nsx denotes the number of players with strategy sx around 
the player for which the payoff is calculated.

A representative phase diagram for the spatial public goods 
game with cooperators that punish defectors is presented in Fig. 1. 
The inset, on the other hand, shows how the overall cooperation 
level increases monotonously with the fine for three different val-
ues of the punishment cost γ . It can be observed that punishing 
cooperators always prevail for a sufficiently large fine, indepen-
dently of the punishment cost γ . If the cost is lower than a critical 
value (γ ≈ 0.65 at r = 3.8), the application of a sufficiently large 
fine will lead to a discontinuous C + D → D + P phase transi-
tion, where punishing cooperators replace pure cooperators in the 
two-strategy phase. The occurrence of this discontinuous phase 
transition is rooted in an indirect territorial competition between 
strategies C and P , which compete independently against D on the 
square lattice. It is important to note that, in the beginning of the 
evolutionary process, C and P players may form mixed coopera-
tive islands. However, when defectors are not in the neighborhood, 
the two strategies have identical payoffs and thus become equiv-
alent, and the strategy update dynamics defined by Eq. (3) results 
in logarithmic coarsening that is otherwise characteristic for the 
voter model [26]. Although the coarsening is logarithmically slow, 
C and P players in these islands segregate quickly, given that their 
size is typically very small. After this segregation, homogeneous 
clusters of pure cooperators and punishing cooperators compete 
separately against the defectors. When the punishment fine is suf-
ficiently large, punishing cooperators suddenly become more effec-
tive against defectors than pure cooperators, so that eventually the 
later are crowded out and replaced by the former. It is worth not-
ing that discontinuous phase transitions due to indirect territorial 
competition appear to be common in evolutionary games in struc-
tured populations, as they have been observed before also in the 
public goods game with pool punishment [27] and in the public 
goods game with correlated positive and negative reciprocity [18]
(see also [11,28] for reviews).

4. Public goods game with positive and negative reciprocity

While the results presented in Section 3 can serve as an intro-
duction to phase transitions in models of human cooperation, it 
is of course possible to devise more elaborate models, which ac-
cordingly also give rise to more complex spatiotemporal dynamics 
between the competing strategies. An example is the public goods 
game with positive and negative reciprocity [18], where instead of 
the original two strategies making up the null model, we initially 
have defectors (sx = D), cooperators that punish defectors (sx = P ), 
cooperators that reward other cooperators (sx = R), and coopera-
tors that both punish defectors as well as reward other cooperators 
(sx = B) occupying the vertices of the square lattice with equal 
probability. As in Section 3, all three cooperative strategies (P , R
and B) contribute c = 1 to the public good, while defectors con-
tribute nothing. Moreover, a defector is fined with β/(G − 1) from 
each punisher (P or B) within the group, which in turn requires 
each punisher to bear the cost γ /(G − 1) for each defector that is 
punished. Similarly, every cooperator is given the reward β/(G −1)

from every R and B player within the group, while each of them 
has to bear the cost of rewarding γ /(G − 1) for every cooperator 
that is rewarded. In agreement with these rules, the payoff values 
of the four competing strategies obtained from each group g are

�
g
D = r(N P + NR + NB)/G − β(N P + NB)/(G − 1),

�
g
P = r(N P + NR + NB + 1)/G − γ ND/(G − 1)

+ β(NR + NB)/(G − 1),

�
g
R = r(N P + NR + NB + 1)/G − γ (N P + NR + NB)/(G − 1)

+ β(NR + NB)/(G − 1),

�
g
B = r(N P + NR + NB + 1)/G − γ + β(NR + NB)/(G − 1),

where Nsx denotes the number of players with strategy sx around 
the player for which the payoff is calculated.

An analysis of this model reveals that discontinuous phase tran-
sitions dominate, which has to do with the spontaneous emer-
gence of cyclic dominance between strategies D , P and B . In 
particular, within the three-strategy D + P + B phase strategy 
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Fig. 2. Cross-section of the phase diagram, as obtained for β = 0.37 (left) and β = 0.55 (right). Depicted are stationary fractions of the four competing strategies in dependence 
on cost γ . Stable solutions are denoted along the top axis. Here D(B) indicates that either a pure D or a pure B phase can be the final state if starting from random initial 
conditions. On the left, the D + P + B → D(B) phase transition is continuous because the average fraction of strategy P gradually decays to zero as γ increases. On the right, 
however, the D + P + B → D(B) phase transition is discontinuous because the amplitude of oscillations diverges independently of the system size as γ increases. These 
results are reproduced with permission from [18].
D outperforms strategy P , strategy P outperforms strategy B , 
while strategy B again outperforms strategy D . As is frequently 
the case [28], here the spontaneous emergence of cyclic dom-
inance brings with it fascinating dynamical processes that are 
driven by pattern formation, by means of which this phase may 
terminate. Fig. 2 features two characteristic cross-sections of the 
phase diagram, which reveal two qualitatively different ways for 
the D + P + B cyclic dominance phase to give way to the D(B)

phase. The process depicted in the left panel of Fig. 2 is relatively 
straightforward. Here the average fractions of strategies P and B
decay due to the increasing cost γ , which ultimately results in the 
vanishing average value of the fraction of strategy P . The closed 
cycle of dominance is therefore interrupted and the D + P + B
phase terminates.

The situation for β = 0.55 in the right panel of Fig. 2 is more 
peculiar and interesting. Here the average values of all three strate-
gies remain finite. Hence, the termination of the D + P + B phase 
has a different origin than at β = 0.37. In fact, for β = 0.55 it is 
the amplitude of oscillations that increases with increasing values 
of γ . And it is the increase in the amplitude that ultimately re-
sults in a uniform absorbing phase regardless of the system size. 
Here it is crucial to emphasize that the increase of the amplitude 
of oscillation is not a finite-size effect. Although in spatial systems 
with cyclic dominance it is typical to observe oscillations with in-
creasingly smaller amplitude as the system size is increased, this 
does not hold in the present case, where in fact we have divergent 
fluctuations in the stationary state.

5. Progress in related fields

Recent progress in three related fields is of particularly im-
portance for the further development of models of human coop-
eration. In the first place, network science has been going from 
strength to strength during the past decade and a half, delivering 
inspirational results, models, and methods, that have revived not 
just statistical physics, but many other fields of natural and so-
cial sciences. The field of network science has definitively come of 
age [29], and it now allows us to study game-theoretical models 
on more realistic interaction networks. Changes in our interac-
tions over time can be studied in the realm of temporal networks 
[10,30], while the interactions not just among us but also among 
different groups, institutions, and societies, can be accommodated 
by means of multilayer or interdependent networks [31,32]. Much 
has also been done recently to identify central individuals in net-
works, who might be particularly likely to exercise influence on 
others and promote different behavioral norms [33–35]. These ad-
vances shall definitively help us develop better models for describ-
ing the rise and fall of cooperation in human societies.

Secondly, with the coming of age of network science, there 
is also the maturing of computational social science [36], which 
flourishes with the availability of an ever increasing amount of 
digital data that the way we are living our lives is leaving behind. 
While social experiments in the past typically involved one-shot 
self-reported data on relationships and their outcomes in a small 
sample of people, the approach today is to mine massive amounts 
of digitized data for both the structure and the content of rela-
tionships [37]. This might include anything from the examination 
of group interactions through e-mail data to the tracking of move-
ment of people in different environments. While inferring who co-
operates and who not, when, why, and under what circumstances, 
from such digital traces is still a formidable challenge, insights 
from computational social science will certainly play a promi-
nent role in expanding our understanding of human cooperation. 
Also important, the field itself fosters awareness and acceptance 
of computational models for the better understanding of our so-
cieties, which is very important for the promotion of this type of 
interdisciplinary research.

Thirdly, recent years have seen the advent of large-scale be-
havioral experiments [23], which are made easier by ready-made 
software designed specifically for such purposes [38], as well as by 
online recruitment of participants through platforms such as Me-
chanical Turk [39]. These experiments can target specific aspects 
of human cooperation, and as such can serve both as validation 
as well as guide for computational modeling. Also, they may help 
to pinpoint which parameters affect cooperative behavior and how. 
For example, experiments have shown that the benefit of coopera-
tion has a positive effect on cooperative behavior [40], and that the 
group size can have several different effects as well [41], depend-
ing on the way the benefit of cooperation increases with the size 
of the group (see also [20,21]). Another important parameter has 
been found to be the cognitive effort spent in making a decision. 
While standard models assume that people have enough cogni-
tive resources to evaluate all possible alternatives before making a 
decision, this is in fact not always the case. Several studies have 
found that the amount of cognitive resources spent on making a 
decision significantly affects cooperative behavior [42,43]. In gen-
eral, combining evolutionary models with behavioral experiments 
can generate deep insights into human cooperation, and this is cer-
tainly a prospect that is worth exploring to the fullest in the future.
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6. Future research

Over the past decade, the application of statistical physics to 
evolutionary games has delivered a great deal of insight into which 
strategies, mechanisms, and external factors promote cooperation 
in game-theoretical models, and why this is case. The time is thus 
ripe to try and integrate these models together into a more co-
hesive and relevant theoretical framework, so that it will not look 
like we are considering just some little fraction of the problem at 
a time, but that the resulting models will become more relevant 
for actual human cooperation. For this task, one may find inspi-
ration and guidance in the many works on the subject stemming 
from anthropology, psychology, and sociology, which are still insuf-
ficiently integrated into theoretical research.

There are also several hypotheses available to explain why co-
operation thrives in human societies, none of which have yet been 
integrated into game-theoretical models aimed at addressing the 
puzzle of human cooperation. There is the “heart on your sleeve” 
hypothesis, which holds that humans are cooperative because they 
can truthfully signal cooperative intentions. Most recent research 
indicates, for example, that third-party punishment is likely a 
costly signal of trustworthiness among humans [44]. Moreover, 
cultural group selection hypotheses argue that the importance of 
culture in determining human behavior causes selection among 
groups to be more important for humans than for other animals. 
And there are the moralistic reciprocity hypotheses, which assert 
that greater human cognitive abilities and advanced language al-
low us to manage larger networks of reciprocity. These and re-
lated hypotheses could all be verified in the realm of evolutionary 
games in structured populations. In particular, information sharing 
and the reliability of shared information across different networks 
representing different groups or populations could reveal whether 
honest signalling is indeed crucial. In terms of the integration of 
cognitive abilities, just recently Bear and Rand [45] have intro-
duced a new modeling paradigm for looking at the evolution of 
cognition (intuition versus deliberation) as well as the evolution 
of behavior (cooperation versus defection) in an evolutionary set-
ting. Their model is an important first step in taking into account 
advanced cognitive abilities when studying the evolution of co-
operation, and there are many ways in which this model can be 
extended and studied in the realm of statistical physics of evolu-
tionary games. Network effects, time variations in interactions and 
interdependencies across different networks, and many other game 
specific could be considered.

Another important but significantly underexplored subject con-
cerns the differences among us in terms of what we are striving 
for, and in terms of our personal success and status. All these 
factors condition and affect our behavior. To illustrate the point, 
imagine two individuals using public transport. One is wealthy and 
the other is poor. One might assume that the wealthy individual is 
less likely to defect by using the service without paying for the 
ticket. The temptation to defect is higher for the poor individual. 
This is to remind us that each time we are faced with the choice of 
either cooperating or defecting, we are likely to perceive differently 
what we might gain or lose by choosing to cooperate. Here the so-
called evolutionary multigames [46–49] provide an apt upgrade to 
the theoretical framework for properly addressing precisely such 
situations.

Looking forward, physicists should team up more closely with 
social scientists, and with their help merge, refine, and upgrade 
game-theoretical models so that they will become more widely ac-
ceptable for describing cooperation in human societies. The hope is 
to clearly identify strategies and factors that promote human coop-
eration, and of course, no less importantly, to identify everything 
that works in the opposite direction. We should utilize methods of 
statistical physics and network science, and in particular to extend 
the concepts of phase transitions and universality, for describing 
and explaining cooperation in human societies, and to come up 
with useful models that will help guide our efforts towards a sus-
tainable, better future. This line of research has the potential to 
have a deeply positive impact on pressing challenges that we are 
facing today, many of which rely on large-scale cooperative ef-
forts. And not just cooperative efforts that have a positive outcome, 
such as mitigation of social crisis or the preservation of natural 
resources for future generations, but to understand also those co-
operative efforts that have very negative, adverse outcomes, such 
as acts of terror and oppression. Ultimately, we must learn how 
to create organizations, governments, and societies that are more 
cooperative, more productive, and more egalitarian. A predictive, 
computational theory of human behavior could help us engineer 
better social systems and inform relevantly on the policies and 
incentives that could mitigate crisis, inequality, and government 
failure.

Acknowledgments

I would like to thank Charles R. Doering for the invitation 
and encouragement to write this perspective for Physics Letters A. 
Financial support from the Slovenian Research Agency (Grants 
J1-7009 and P5-0027) is gratefully acknowledged as well.

References

[1] M.A. Nowak, R. Highfield, SuperCooperators: Altruism, Evolution, and Why We 
Need Each Other to Succeed, Free Press, New York, 2011.

[2] D. Kennedy, C. Norman, Science 309 (2005) 75.
[3] W.D. Hamilton, J. Theor. Biol. 7 (1964) 1.
[4] E.O. Wilson, The Insect Societies, Harvard Univ. Press, Harvard, 1971.
[5] A.F. Skutch, Condor 63 (1961) 198.
[6] C.D. Nadell, J. Xavier, K.R. Foster, FEMS Microbiol. Rev. 33 (2009) 206.
[7] M.A. Nowak, Science 314 (2006) 1560.
[8] M.A. Nowak, R.M. May, Nature 359 (1992) 826.
[9] G. Szabó, G. Fáth, Phys. Rep. 446 (2007) 97.

[10] M. Perc, A. Szolnoki, Biosystems 99 (2010) 109.
[11] M. Perc, J. Gómez-Gardeñes, A. Szolnoki, L.M. Floría, Y. Moreno, J. R. Soc. Inter-

face 10 (2013) 20120997.
[12] Z. Wang, L. Wang, A. Szolnoki, M. Perc, Eur. Phys. J. B 88 (2015) 124.
[13] G. Szabó, I. Borsos, Phys. Rep. 624 (2016) 1.
[14] J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics, Cam-

bridge University Press, Cambridge, U.K., 1998.
[15] D.A. Rand, M.A. Nowak, Trends Cogn. Sci. 17 (2013) 413.
[16] A. Szolnoki, M. Perc, G. Szabó, Phys. Rev. E 80 (2009) 056109.
[17] D. Helbing, A. Szolnoki, M. Perc, G. Szabó, New J. Phys. 12 (2010) 083005.
[18] A. Szolnoki, M. Perc, Phys. Rev. X 3 (2013) 041021.
[19] G. Hardin, Science 162 (1968) 1243.
[20] A. Szolnoki, M. Perc, Phys. Rev. E 81 (2010) 057101.
[21] A. Szolnoki, M. Perc, Phys. Rev. E 84 (2011) 047102.
[22] S.B. Hrdy, Mothers and Others: The Evolutionary Origins of Mutual Understand-

ing, Harvard University Press, Cambridge, MA, 2011.
[23] G. Kraft-Todd, E. Yoeli, S. Bhanot, D. Rand, Curr. Opin. Behav. Sci. 3 (2015) 96.
[24] K. Sigmund, Trends Ecol. Evol. 22 (2007) 593.
[25] E. Fehr, Nature 432 (2004) 449.
[26] I. Dornic, H. Chaté, J. Chave, H. Hinrichsen, Phys. Rev. Lett. 87 (2001) 045701.
[27] A. Szolnoki, G. Szabó, M. Perc, Phys. Rev. E 83 (2011) 036101.
[28] A. Szolnoki, M. Mobilia, L.-L. Jiang, B. Szczesny, A.M. Rucklidge, M. Perc, J. R. 

Soc. Interface 11 (2014) 20140735.
[29] A.-L. Barabási, Network Science, Cambridge University Press, Cambridge, 2015.
[30] P. Holme, J. Saramäki, Phys. Rep. 519 (2012) 97.
[31] M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, 

J. Complex Netw. 2 (2014) 203.
[32] S. Boccaletti, G. Bianconi, R. Criado, C. del Genio, J. Gómez-Gardeñes, M. Ro-

mance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544 (2014) 1.
[33] M. Kitsak, L.K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H.E. Stanley, H.A. Makse, 

Nat. Phys. 6 (2010) 888.
[34] F. Morone, H.A. Makse, Nature 524 (2015) 65.
[35] A. Szolnoki, M. Perc, Europhys. Lett. 113 (2016) 58004.
[36] D. Lazer, A. Pentland, L.A. Adamic, S. Aral, A.L. Barabási, D. Brewer, N. Christakis, 

N. Contractor, J. Fowler, M. Gutmann, et al., Science 323 (2009) 721.
[37] R. Bond, C. Fariss, J. Jones, A. Kramer, C. Marlow, J. Settle, J. Fowler, Nature 489 

(2012) 295.
[38] U. Fischbacher, Exp. Econ. 10 (2007) 171.

http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6E6F77616B5F3131s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6E6F77616B5F3131s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6B656E6E6564795F733035s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib68616D696C746F6E5F77645F6A74623634s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib77696C736F6E5F3731s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib736B757463685F636F3631s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6E6164656C6C5F66656D733039s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6E6F77616B5F733036s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6E6F77616B5F6E393262s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib737A61626F5F70723037s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib706572635F62733130s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib706572635F6A7273693133s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib706572635F6A7273693133s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib77616E675F7A5F65706A623135s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib737A61626F5F70723136s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib686F6662617565725F3938s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib686F6662617565725F3938s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib72616E645F7463733133s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib737A6F6C6E6F6B695F707265303963s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib68656C62696E675F6E6A703130s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib737A6F6C6E6F6B695F7072783133s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib68617264696E5F675F733638s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib737A6F6C6E6F6B695F7072653130s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib737A6F6C6E6F6B695F707265313163s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib687264795F3131s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib687264795F3131s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6B726166745F636F62733135s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib7369676D756E645F7465653037s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib666568725F6E3034s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib646F726E69635F70726C3031s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib737A6F6C6E6F6B695F7072653131s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib737A6F6C6E6F6B695F6A727369663134s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib737A6F6C6E6F6B695F6A727369663134s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib62617261626173695F3136s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib686F6C6D655F73723132s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6B6976656C615F6A636E3134s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6B6976656C615F6A636E3134s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib626F6363616C657474695F70723134s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib626F6363616C657474695F70723134s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6B697473616B5F6E3130s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6B697473616B5F6E3130s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6D6F726F6E655F6E3135s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib737A6F6C6E6F6B695F65706C3136s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6C617A65725F733039s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6C617A65725F733039s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib626F6E645F6E3132s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib626F6E645F6E3132s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib66697363686261636865725F65653037s1


2808 M. Perc / Physics Letters A 380 (2016) 2803–2808
[39] D.G. Rand, J. Theor. Biol. 299 (2012) 172.
[40] V. Capraro, J.J. Jordan, D.G. Rand, Sci. Rep. 4 (2014) 6790.
[41] H. Barcelo, V. Capraro, Sci. Rep. 5 (2015) 7937.
[42] D. Rand, J. Greene, M. Nowak, Nature 489 (2012) 427.
[43] V. Capraro, G. Cococcioni, in: Proc. R. Soc. B, vol. 282, The Royal Society, 2015, 

p. 20150237.
[44] J.J. Jordan, M. Hoffman, P. Bloom, D.G. Rand, Nature 530 (2016) 473.
[45] A. Bear, D.G. Rand, Proc. Natl. Acad. Sci. USA 113 (2016) 936.
[46] K. Hashimoto, J. Theor. Biol. 345 (2014) 70.
[47] Z. Wang, A. Szolnoki, M. Perc, Phys. Rev. E 90 (2014) 032813.
[48] A. Szolnoki, M. Perc, Europhys. Lett. 108 (2014) 28004.
[49] M.A. Amaral, L. Wardil, M. Perc, J.K. da Silva, Phys. Rev. E 93 (2016) 042304.

http://refhub.elsevier.com/S0375-9601(16)30322-X/bib72616E645F6A74623132s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6361707261726F3230313468657572697374696373s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib62617263656C6F3230313567726F7570s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib72616E645F6E3132s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6361707261726F32303135736F6369616Cs1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6361707261726F32303135736F6369616Cs1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib6A6F7264616E5F6E3136s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib626561725F706E61733136s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib68617368696D6F746F5F6A74623134s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib77616E675F7A5F707265313462s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib737A6F6C6E6F6B695F65706C313462s1
http://refhub.elsevier.com/S0375-9601(16)30322-X/bib616D6172616C3230313665766F6C7574696F6E617279s1

	Phase transitions in models of human cooperation
	1 Introduction
	2 The null model
	3 Public goods game with punishment
	4 Public goods game with positive and negative reciprocity
	5 Progress in related ﬁelds
	6 Future research
	Acknowledgments
	References


