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Abstract

Neuronal networks, similar to many other complex systems, self-organize into fascinating emergent states that are not only 
visually compelling, but also vital for the proper functioning of the brain. Synchronous spatiotemporal patterns, for example, 
play an important role in neuronal communication and plasticity, and in various cognitive processes. Recent research has shown 
that the coexistence of coherent and incoherent states, known as chimera states or simply chimeras, is particularly important and 
characteristic for neuronal systems. Chimeras have also been linked to the Parkinson’s disease, epileptic seizures, and even to 
schizophrenia. The emergence of this unique collective behavior is due to diverse factors that characterize neuronal dynamics and 
the functioning of the brain in general, including neural bumps and unihemispheric slow-wave sleep in some aquatic mammals. 
Since their discovery, chimera states have attracted ample attention of researchers that work at the interface of physics and life 
sciences. We here review contemporary research dedicated to chimeras in neuronal networks, focusing on the relevance of different 
synaptic connections, and on the effects of different network structures and coupling setups. We also cover the emergence of 
different types of chimera states, we highlight their relevance in other related physical and biological systems, and we outline 
promising research directions for the future, including possibilities for experimental verification.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The human brain is a very challenging complex system [1] where neurons and their interconnections through 
synapses form possibly the most complicated structure. A simple subdivision of the entire information processing 
system, i.e. the vertebrate nervous system, consists of the central nervous system and the peripheral nervous system. 
The peripheral nervous system is made up of the nerves that are situated outside of the brain or the spinal cord. While 
the central nervous system comprises of the brain and the spinal cord and it is the place where information received 
by the sense organs are stored and managed. The presence of about 86 billion neurons and thousands times more 
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synapse in the nervous system of the human brain has made it so mysterious that its complexity is yet to be resolved. 
Neurons are comprised of different components, among which the special connection that transfers signals from one 
neuron to another is known as the synapse [2]. Such connections can usually be found at the dendrites of a neuron and 
sometimes also directly at the soma. Synapses can be of two types, namely electrical synapse and chemical synapse. 
Electrical synapse is an electrically conductive link between two neighboring neurons that is formed at the gap junction 
between two neurons. At a chemical synapse, a neuron discharges neurotransmitter molecules into the synaptic cleft 
that is adjacent to another neuron. As the distance between synaptic junctions is shorter for electrical impulses, they 
move faster whereas in case of chemical synapses, the process of sending messages using neurotransmitter is slower. 
The advantage of electrical synapses is the absence of delay while the advantage of chemical synapses lies in their 
versatility. Rhythmicity or synchrony among large number of neurons in neuronal ensembles is very much essential 
for various neurobiological processes, which mainly appears due to the inter-neuronal synaptic interactions.

In general, synchronization [3–5] refers to a dynamical process wherein two (or many) systems adjust a given 
property of their motion to a common behavior due to interaction between each other or to a forcing. And neuronal 
networks, among other complex systems, self-organize in such ways that synchronous spatiotemporal patterns can 
emerge. Synchrony in neuronal networks is required for normal and various cognitive functions, neuronal commu-
nication, neural plasticity and in memory processes [6]. Essentially, the ref. [7] explained that the task-related alpha 
synchronization in frontal brain regions is associated to top-down processing and high internal processing demands.

On the other hand, since the first observance of coexisting coherence and incoherence patterns by Kuramoto and 
Battogtokh [8] in nonlocally coupled phase oscillators, this captivating phenomenon, popularly known as chimera 
state [9–11] has been elaborately investigated during the past decade in a wide range of systems. For instance, study 
of chimera states in phase oscillators includes a number of illustrious articles [8,12–15]. In fact, it has been shown 
that they are not limited to originate in coupled phase oscillators, but can also be realized in a large variety of different 
systems including neuronal networks. In chaotic systems [16,17], different types of chimeric patterns are identified. 
As far as the coupling topology is concerned, these states have been found in globally coupled [18–23] as well as 
in locally connected [18,24–27] dynamical networks. Chimera states have also been realized in networks having 
unconventional interactions [28–41]. This covers a broad range of ideas, e.g., study of the ref. [28] revealed that the 
chimera states are sturdy against perturbations in the form of inhomogeneous elements with regular coupling topology 
in network of FitzHugh–Nagumo oscillators and also studied networks of identical elements with irregular coupling 
topologies. Existence of chimera-like states in modular neuronal network based on the idea of the connectome of the 
C. elegans soil worm in presence of hybrid synapses, is discussed in ref. [29]. Ko et al. [42] studied chimera patterns 
in the form of partially locked states in a network of identical phase oscillators with scale-free distribution of coupling 
strength. In ref. [30], authors have investigated properties of chimera states and their dependence on parameters 
for both scale-free and Erdös–Rényi networks. Presence of stable, breathing, and alternating chimera states in time 
varying complex networks made of two coupled sub-networks of Kuramoto oscillators, where the links between 
the two groups are assumed to vary with time, is reported [31]. The robustness of chimera pattern with respect to 
random removal of links is revealed in [32]. C.R. Laing [43,44] analyzed chimera state in heterogeneous networks for 
which the natural frequencies of the oscillators are chosen from specific distributions and depending on its form, the 
heterogeneity is found to affect the chimera states in a diverse way and also the influence of heterogeneous coupling 
strengths have been discussed. Besides numerical and theoretical studies [45], chimera patterns have been widely 
inspected in experimental models as well. These include optical coupled-map lattices realized by liquid crystal spatial 
light modulators [46], populations of coupled chemical oscillators [47], two sub-populations consisting of identical 
metronomes [48], superconducting squid meta-materials [49], and electronic nonlinear delay oscillators [50]. On the 
other hand, nonlocality in coupling induces spiral wave chimera states [15,51–55] with a possibility in locally coupled 
scenario [56] in spatially extended systems, that exhibit phase-randomized spiral core of desynchronized oscillators 
enclosed by phase-locked dynamical units in the spiral arms.

In this context, we would like to emphasize that recent researches [18,24,25,27–29,33,35,57–62] in dynamical 
networks substantiate that these patterns are particularly likely to incarnate in a variety of neuronal models, the 
deliberation of which is the focus of the present review. In fact, potential applications of chimera states in nature 
incorporate various neural processes, such as the bump states in neural systems in which localized regions of coherent 
oscillation are surrounded by incoherence and the phenomenon of unihemispheric slow-wave sleep of some birds and 
aquatic mammals, which sleep with one eye open, suggesting that half of the brain is synchronized with the other 
half being asynchronous. Besides, this sort of co-existence of synchronization and desynchronization is strongly con-
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nected to various types of neuronal diseases [63], namely Parkinson’s disease, epileptic seizures, Alzheimer’s disease, 
schizophrenia and brain tumors. For these reasons, it is particularly interesting that such states were recently ob-
served in leaky integrate-and-fire neurons with excitatory coupling, as well as in networks of FitzHugh–Nagumo and 
Hindmarsh–Rose neuronal oscillatory systems. Chimera-like states have also been analyzed for non-locally coupled 
Hodgkin–Huxley oscillators and in many other different neuronal network models. Also there exists observational 
evidence of this concurrent patterns in electrical brain activity. Tognoli et al. [64] reported that during studies where 
participants were asked to coordinate left and right finger movement with a periodically flashing light, EEGs revealed 
clusters of coordinated and uncoordinated activity.

Since, chimera state is defined as the coexistence of coherent and incoherent dynamics in a symmetrically coupled 
identical dynamical units, due to such peculiarity, this new discovery has drawn a lot of attention of many physicists, 
biologists and applied mathematicians in the last decade. From the above discussion, it is evident that the study of 
chimera state in neuronal networks deserves special attention in near future as this state is highly relevant from the 
perspective of various neuronal developments.

We have organized this review in the following way. Section 2 is devoted to the discussion of aptness of the 
chimera-like patterns in the light of several neuronal evolution with focus on neural bump states, phenomenon of 
unihemispheric sleep, and some brain diseases. In Section 3, we describe the details of particular models of FitzHugh–
Nagumo and Hindmarsh–Rose systems considered for most of the studies on chimera state in the literature. Different 
types of possible synaptic organizations of a neuronal network are illustrated in Section 4. Section 5 deals with the pre-
sentation of general dynamical model of neuronal networks followed by the description of the quantitative measures 
used in order to differentiate various collective states observed. In Section 6, we concentrate on the materialization 
of chimera-like patterns based on diverse synaptic organizations of the considered neuronal network, for instance, the 
presence of only electrical, only chemical and of both types of synapses will be reviewed in details. Through Sec-
tion 7, we conclude with a summary and future prospects illustrating the challenges ahead in the study of chimera in 
neuronal systems.

2. Pertinency in light of neuronal evolution

The brain function relies on the inter communication among the neurons. During the interaction among numerous 
neurons in large neuronal networks, a group of neurons get divided and lumped into highly connected subnetworks. 
For the coordination or the normal functioning, the interaction follows a mechanism or a class of mechanisms that 
evolved to coordinate the activity within the sub-ensembles. For a number of neuronal processes, such as visual 
information processing, sleeping, and memory in the brain [65–67], the neuronal rhythm [68] plays a crucial role. 
Due to the excitable behavior, neurons emit spikes or bursts [69,70] in the form of electrical signals for governing 
brain functions. The collective rhythmic behavior of neuronal oscillations may appear in different patterns. In this 
consequence, the collective oscillatory dynamics may behave in synchrony, remain disordered or exhibit both types 
of characteristics simultaneously. In the nonlinear dynamics literature such concurrence is termed as “chimera” or 
“chimera-like” states. Experimental studies on brain function have been done based on measuring electrical activities 
non-invasively, through the technique of electroencephalography (EEG) and it was revealed that there are several 
structures of collective neuronal oscillation formed in the brain. The EEG signals exhibit oscillations at different range 
of frequency that represent various brain functions appearing during a diversity of behavioral states (for example, that 
associated with different stages of sleep). In the following, we discuss the resemblances of coexistent synchronous 
and desynchronous dynamics (i.e., “chimera state”) from different aspects of neuronal activities.

2.1. Neural bump states

Neurons are excitable units and due to the recurrent excitations, a new type of neural activity appears in the form 
of pulse or bump which are spatially localized. The bump has been associated with the mechanisms of visual systems, 
head direction systems and working memory. The bump like neural activity appears in coupled neuronal network of 
spiking neurons. The chimera or chimera-like states have strong connection to the bump behavior of the neuronal 
networks. In the bump states, the spatially localized regions consist of partially coherent neuronal oscillations com-
pletely incoherent oscillations that mimic chimera-like states. In ref. [71], the front and stationary bumps are studied 
in both one and two spatial dimensions where the moving fronts connect the regions of high local synchrony (coherent 
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motion) together with regions of complete asynchrony (disordered or incoherent motion). Laing et al. [72] studied the 
networks of pulse coupled integrate-and-fire neurons and they revealed that partial synchronizations of the neurons 
may be the main reason for the termination of bump states. Apart from these investigations, chimera-like state was 
also reported in the electrical brain activity [64]. Here the experiment was performed while considering the interac-
tion between two hands and the interaction between each hand and visual signals. It was shown that the coupling 
between the two hands is much stronger than the coupling between the hands and rhythmic environmental signal, 
which is a resemblance of chimera features in terms of the combination of symmetry (coordination of two hands) 
and symmetry breaking (coordination of hands and external visual stimulus) situation. From the data analysis, it was 
revealed that the diluted coordination dynamics composed of the phase locking and metastability, appears at a high 
frequency. The chimera and chimera-like patterns have also been studied in a few neuronal ensembles, which includes 
coupled Hodgkin–Huxley oscillators [73], Hindmarsh–Rose model [29,59], FitzHugh–Nagumo oscillators [28,57], 
discrete Rulkov map [27], leaky integrate-and-fire neurons [60], and in many other neuronal network models where 
the coupling topology is regular as well as in complex network form [10].

2.2. Unihemispheric sleep

Chimera-like features are strongly related to quite a few neuronal processes, among them ‘unihemispheric slow-
wave sleep’ is one of the most prominent behavioral form observed in some aquatic mammals, such as dolphins, 
eared seals, and manatees [74,75], and some migratory birds [74]. During the slow-wave sleep, these species sleep 
with half of the brain which means they shut down only one cerebral hemisphere of the brain and close the opposite 
eye. During this time, the other half of the brain monitors what is going on in the environment (for migratory birds) 
and controls breathing functions (for aquatic mammals). In this case, the neuronal oscillations in wake part of the 
cerebral hemisphere is desynchronized while the oscillations in the sleepy part is very much synchronized. In this 
context, the experimental EEG records show that the sleeping hemisphere exhibit high-amplitude, low-frequency neu-
ronal oscillations while the other hemisphere (awake side) exhibit low-amplitude, high-frequency neuronal electrical 
activity. The presence of such mixed types of coordination in the hemisphere is a strong indication of the chimera-
like feature. The coexistence of coherent and incoherent neuronal oscillations in the hemisphere may be studied as 
considered in the model [13] where chimera states were observed. Mukhametov et al. [76] experimentally studied 
the EEG data on dolphins and they revealed that the two brain hemispheres of dolphin could produce synchronized 
and desynchronized motion not only simultaneously but also generated independently and such activity patterns alter-
nate between the hemispheres over time. In this context, Ma et al. [77] studied two coupled population of Kuramoto 
phase oscillators to simulate the alternating synchronization behavior and they found that with proper tuning of the 
interaction strength, the synchronous and desynchronous behavior may alter in each subpopulation. These are the 
various pieces of evidence of the evolutionary function asserted by unihemispheric sleep, which is characterized on 
the neurophysiological level by coexistence of coherent and incoherent brain activities.

2.3. Brain disorders

Apart from the previously mentioned scenarios, chimera like anomalous synchronization also resembles certain 
pathological brain states like Parkinson’s disease, Alzheimer’s disease, autism, epileptic seizures, schizophrenia etc. 
Synchronized neuronal responses among large number of neurons are involved in various cognitive and executive 
processes like perceptual awareness, working memory etc. and also undertakes crucial role in motor-related activities, 
such as movement preparation and visual-motor coordination [78]. For instance, during Parkinson’s disease, an atypi-
cal increase in neuronal synchrony in the basal ganglia is observed and one suffers from dysfunctions in motor activity, 
attention, perception [79,80]. Whereas Alzheimer’s disease is related to reduced synchronization of oscillations [81]
in the α-, β- frequency band, and also in γ - band in the resting state, that also results in cognitive dysfunctions. 
Epilepsy refers to peculiar enhancement in local neural synchronization along with reduction in long-range synchrony 
yielding a number of heterogeneous neurological disorders characterized by seizures [82,83]. Several EEG studies 
have demonstrated that schizophrenia is also related to damaged local and long-range neural synchronization [84], 
impairing cognitive abilities.

Thus there are certain aspects that correlate chimera like abnormal synchrony to several neuronal activities and for 
this reason, study of such exceptional dynamical phenomenon in neuronal systems demands significant deliberation.
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3. Neuronal models

Neuronal rhythmicity is realized by diverse dynamical mechanisms that may be analyzed and described through a 
set of mathematical equations [85]. In order to properly predict certain biological processes which are associated to 
the neuronal behavior, several mathematical neuronal models were developed. Among them, Hodgkin–Huxley neuron 
model [86] is widely used for the study of diverse features of neurons, invented by Hodgkin and Huxley based on the 
data from the squid giant axon. The mathematical description of this model is very complicated and so after a number 
of modifications and simplifications, similar type of models have been proposed, such as FitzHugh–Nagumo model 
[87,88] and the Hindmarsh–Rose model [89]. The qualitative local dynamical behaviors including regular bursting, 
chaotic bursting, rhythmic spiking of neurons can be accurately captured by these two neuronal models. So, for 
studying various collective dynamical patterns arising in networks of coupled neurons, we consider these two simple 
paradigmatic models in this review. In the following subsections, we briefly describe some inherent features of isolated 
FitzHugh–Nagumo and Hindmarsh–Rose models.

3.1. FitzHugh–Nagumo model

The two dimensional FitzHugh–Nagumo model describes the process of activation and deactivation dynamics 
of a spiking neuron. The mathematical form of the individual system is described by the following set of ordinary 
differential equations:

ε0u̇ = u − u3

3 − v,

v̇ = u + μ.
(1)

This system exhibits limit cycle relaxation oscillation for proper choice of the excitability threshold μ and u, v rep-
resent the activator and inhibitor variables, ε0 > 0 is the parameter characterizing the time scale separation of fast 
activator and slow inhibitors. Whenever |μ| < 1, the system follows the oscillatory motion while the system is in 
excitable state if |μ| > 1.

3.2. Hindmarsh–Rose model

The three-dimensional Hindmarsh–Rose neuronal model, which is well known for showing all common dynamical 
features found in a number of biophysical modeling studies of bursting, in its original form is expressed as follows,

ẋ = y + ax2 − x3 − z + J,

ẏ = 1 − dx2 − y,

ż = c(b(x − x0) − z),

(2)

where the variable x represents the membrane potential of the neuron, variables y and z are associated to the transport 
of ions across the membrane through the fast (e.g., sodium) and slow (e.g., potassium) channels respectively. J is the 
magnitude of stimulus current that enters the neuron and c corresponds to the inverse of a time constant, determines 
how fast z changes and x0 is a control parameter delaying and advancing the activation of the slow current in the 
modeled neuron. As a simplification, we employ a linear transformation x −→ x, y −→ 1 − y, z −→ 1 + J + z, 
d −→ a + α, e −→ −1 − J − bx0 so that the above equations become

ẋ = ax2 − x3 − y − z,

ẏ = (a + α)x2 − y,

ż = c(bx − z + e).

(3)

Small values of c lead to slow evolution of z compared to the variables x and y. Particularly choosing a = 2.8, α = 1.6, 
c = 0.001, b = 9, and e = 5, square wave bursting can be witnessed in the above model.

4. Neuronal synaptic communication

Information transformation among neurons mainly happen through two types of functional connections, one is 
chemical synapse and the other one is electrical gap junctional communication. The signals are carried chemically 
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Fig. 1. Different types of neuronal interactions through electrical and chemical synapses in the nervous system. (a) Chemical transmission occurring 
through chemical synapses and electrical transmission mediated via gap junction between two neurons. (b) Mixed synaptic interaction: simultaneous 
electric and chemical synaptic interactions between two neurons. (c) Heterosynaptic interaction: one neuron interacts with two other neurons 
simultaneously, one connected through the gap junction channel and the other through chemical synapse. (d) The mechanism of mixed synaptic 
interaction of goldfish. Figure reproduced with permission from [2].

through the chemical synapses via neurotransmitter molecules such as gamma-Aminobutyric acid, Acetylcholine, 
dopamine and serotonin, packaged within the small synaptic vesicles. In a stochastic way, exocytosis releases the 
neurotransmitters from a pre-synaptic neuron into the adjacent synaptic cleft. After that, these molecules are detected 
and bind to specific post-synaptic receptors in adjacent neuronal cells. In such unidirectional transmission of informa-
tion process, the distance between pre- and post-synaptic ends is approximately 20–40 nm [90]. In case of electrical 
synapses, the cytoplasm of the adjacent cells is directly connected by intercellular channels called gap junction. Within 
the pre-synaptic end and the post-synaptic neuron, electric current, cyclic AMP, calcium and inositol-1,4,5 trisphos-
phate transmission occurs bidirectionally. In this case, the membranes of pre- and post-synaptic neurons are very close 
to each other, approximately 3.5 nm [91]. In most of the nervous systems, these two types of synapses are present 
simultaneously. But the inter neuronal synaptic communication may not necessarily occur simultaneously via these 
two types of synapses, rather they perform independently [2]. When two neurons interact through both electrical and 
chemical synapses then this neuronal communication is known as mixed synaptic communication while in case of 
hetero synaptic interaction, one neuron communicates with two other neurons in such a way that one is connected 
through chemical synapses and the other one interacts via electrical gap junction. For a better understanding, different 
types of possible modes of synaptic communication are shown in Fig. 1. Fig. 1(a) describes the interactions between 
two neurons which occur independently through either electrical or chemical synapses, while Figs. 1(b) and 1(d) rep-
resent the interaction in presence of both synapses. A single neuron interacts with other two neurons among which 
one is connected through electrical synapse and other one through chemical synapse, the corresponding schematic 
diagram is shown in Fig. 1(c).

A large neuronal network gets divided into subnetworks at the time of interaction among the neurons and the 
communications happen through different types of synapses within the subnetworks where the underlying network 
topology may be regular or irregular. In Section 6, we study the existence of chimera states in regular types of network 
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topology which includes local (nearest neighbor), global (all-to-all), nonlocal and also other possible network struc-
tures such as multilayer networks, small world network while considering identical neuronal oscillators to cast the 
local dynamical units. Time delay in the synaptic communications is inevitable due to finite signal transmission speed 
from one neuron to another. So the study on the time delay effect in coupling function on chimera states in neuronal 
networks is very crucial. In the Section 6, we have discussed the role of synaptic delay on chimera states.

5. General dynamical equation for neuronal communication

Here we present the general mathematical framework for a neuronal network consisting of N identical neuronal 
oscillators. Each node of the network represents a d− dimensional dynamical system and the corresponding state 
vector of the i-th node is denoted by Xi = (xi,1, xi,2, ..., xi,d )T and whose local dynamics is governed by the flow 
F(Xi). The coupling between the i-th and j -th neuron is denoted by the function H(Xi, Xj) ∈ C1. The dynamical 
equation of the entire network is then described as

Ẋi = F(Xi) + Ke

N∑
j=1

Aij (e)DeHe(Xi,Xj ) + Kc

N∑
j=1

Aij (c)DcHc(Xi,Xj ), (4)

where Aij (e, c) represents the adjacency matrices determining the connectivity between i-th and j -th neurons for 
electrical and chemical synaptic interaction functions He,c(Xi, Xj) with coupling strengths Ke and Kc respectively. 
Here De,c are the appropriate d × d diagonal matrices corresponding to electrical and chemical synapses respec-
tively. The general form of the electrical coupling between the i-th and j -th neurons is of linear diffusive type (i.e., 
He(Xi, Xj) = Xj − Xi ) while the chemical synaptic function is a non-linear sigmoidal function, represented by 
Hc(Xi, Xj) = (vs − Xi)�(Xj ) where �(x) = 1

1+e−λ(x−�s) .
In the following subsections, we discuss the functions of three quantitative measures, namely strength of inco-

herence and discontinuity measure, mean phase velocity and local order parameter which are used to characterize 
the chimera states together with incoherent and coherent dynamics. In order to compute these measures, long time 
averages of each oscillatory dynamics in the network are considered.

5.1. Strength of incoherence and the discontinuity measure

To distinguish the disordered (incoherent), chimera, multi-chimera and coherent states, we use the statistical 
measures, named as strength of incoherence and discontinuity measure following a local standard deviation anal-
ysis [92]. The computations of strength of incoherence and discontinuity measure are based on the time series of 
the each dynamical unit in the network. To calculate these statistical measures, we first introduce transformations 
wl,i = xl,i − xl,i+1, l = 1, 2, ..., d, i = 1, 2, ..., N and divide the number of oscillators into M (even) bins of equal 
length n = N/M . Then the local standard deviation is defined as

σl(m) =
〈√√√√1

n

mn∑
j=n(m−1)+1

[wl,j − 〈wl〉]2

〉
t

, (5)

where m = 1, 2, ..., M and l = 1, 2, ..., d; i = 1, 2, ..., N , and 〈wl〉 = 1
N

∑N
i=1 wl,i(t) and 〈· · ·〉t denotes the average 

over time. The above quantity σl(m) can be calculated for every successive n number of oscillators. Then the strength 
of incoherence is defined as,

SI = 1 −
∑M

m=1 sm

M
, sm = �(δ0 − σl(m)), (6)

where �(·) is the Heaviside step function and δ0 is a predefined threshold. Consequently, the values of SI=1, SI=0 
and 0 < SI < 1 represent disordered, coherent and chimera or multi-chimera states respectively. Again in order to 
distinguish chimera from multi-chimera states, we also introduce the so called discontinuity measure which is defined 
as

DM =
∑M

i=1 | si+1 − si |
, with sM+1 = s1. (7)
2
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For chimera state the value of DM = 1 and for multi-chimera state the value of DM is a positive integer greater than 
“1” and 2 ≤ DM ≤ M

2 .

5.2. Mean phase velocity

To verify the existence of chimera states together with incoherent and coherent states in coupled systems, we 
compute the long time averaged mean phase velocity of each neuron defined [57] as

ωi = 2πMi


T
, i = 1,2, ...,N, (8)

where Mi is the number of spikes of the ith neuron during a sufficiently long time interval 
T . The values of ωi have
random distribution for incoherent states and are constant for coherent states. For chimera and multichimera states, ωi

lie on a continuous curve and only the intervals of constant ωi correspond to the coherent regions where neighboring 
elements are phase locked.

5.3. Local order parameter

The notion of local order parameter (LOP) is used to characterize the coherent–incoherent patterns and chimera 
state. The local order parameter actually signifies the local ordering of the neurons reflecting the degree of coherence 
and incoherence, and is defined [24,57] as

Li =
∣∣∣∣∣∣

1

2ν

∑
|i−k|≤ν

ej�k

∣∣∣∣∣∣ , i = 1,2, ...,N, (9)

where j = √−1 and ν is the number of nearest neighbors on both sides (of a ring) for the i-th neuron and �i is the 
geometric phase of the i-th unit. The local order parameter of the i-th neuron, Li ≈ 1 ensures that the i-th neuron 
belongs to the coherent population of the chimera state, i.e., Li = 1 represents the maximum ordering or coherency. 
On the other hand, Li ≈ 0 indicates that the i-th neuron belongs to the group of incoherent neighboring neurons.

6. Coexistence of coherent and incoherent patterns in coupled neurons under different synaptic 
communication

In this section, we discuss the incarnation of different collective dynamics, mainly emphasizing on the appearance 
of chimera states in coupled neuronal networks. Different possibilities of synaptic communications such as solely 
electrical, chemical and heterosynaptic interactions are considered in the excitatory and inhibitory regimes on top of 
diverse network topologies.

6.1. Chimera states via electrical synapses

We initiate our proceeding with the exploration of the influence of only electrical synapses in the coupled neuronal 
network. This type of neuronal interaction is shown earlier in the right panel of Fig. 1(a). Number of studies have 
been done investigating collective dynamics, such as oscillation suppression, synchronization etc. in the sole presence 
of electrical synapse in two coupled as well as network of neuronal oscillators. Chimera state is a symmetry breaking 
situation that appears in symmetrically coupled network of identical oscillators. So, here we will be discussing three 
types of regular networks, namely local, nonlocal and global topologies. It has been shown that using only electri-
cal synapse, complete neural synchrony appear merely in globally coupled networks for which the information get 
exchanged at a time among all the neurons in the ensemble, otherwise the oscillators are phase locked under the 
local interaction. It has been demonstrated that the chimera state is possible only when the regular coupling topol-
ogy is in nonlocal format. Taking only electrical synapse in nonlocally coupled neuronal network, chimera states are 
observed in Hindmarsh–Rose [59] and FitzHugh–Nagumo models [57]. The FitzHugh–Nagumo system is a paradig-
matic model for excitable behavior, particularly for exhibiting spiking dynamics in neurons and it has a wide range of 
application from biological processes to optoelectronic oscillators and nonlinear electronic circuits. Now, we consider 
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Fig. 2. Chimera states in nonlocally coupled FitzHugh–Nagumo model. (a) The snapshots of the activator variable uk with respect to number of 
node and (b) the phase space where black represents the nullcline of the FitzHugh–Nagumo systems. (c) and (d) correspond to the mean phase 
velocity ωk and local order parameter Zk . The other parameters are fixed at N = 1000, μk = μ = 0.5, R = 0.35, σ = 0.1, ε0 = 0.05, γ = D = 0
and φ = π/2 − 0.1. Here uk, vk, ωk and Zk bear the same connotations as ui , vi , ωi and Li in Eqs. (10), (8), (9). Figure reproduced with 
permission from [57].

the neuronal network of N nonlocally coupled FitzHugh–Nagumo oscillators in presence of noise and time delayed 
feedback coupling function. The corresponding dynamical equation is given by,

ε0u̇i = ui − u3
i

3
− vi + σ

2P

i+P∑
j=i−P

[buu(uj − ui) + buv(vj − vi)] + γ ε(ui(t) − ui(t − τ))

v̇i = ui + μi + σ

2P

i+P∑
j=i−P

[bvu(uj − ui) + bvv(vj − vi)] + √
2Dξi(t),

(10)

where ui and vi are the activator and inhibitor variables of the i-the oscillator respectively, for i = 1, ..., N , N is the 
total number of the neuronal oscillators in the network. ε0 is defined as a time-scale separation parameter and for 
|μi | < 1, the individual FitzHugh–Nagumo oscillator is in oscillatory regime in which the system has unstable steady 
state while for the excitable state |μi| > 1. σ is the over all effective coupling strength and P is the number of nearest 
neighbors in each direction of the ring with respect to the i-th neuron and parameter R = P

N
is the coupling radius. γ

and τ represent the self feedback strength and delay time. Also, ξi(t) denotes the Gaussian white noise with intensity 
D and 〈ξi(t)〉 = 0; 〈ξi(t)ξi(t

′)〉 = δij δ(t − t ′). In Eq. (10), interaction takes place not only between the same variables 
but also through a cross coupling scheme between the variables ui and vi that can be modeled through a rotational 
coupling matrix as,

C =
(

buu buv

bvu bvv

)
=

(
cosφ sinφ

− sinφ cosφ

)
,

which depends on a single parameter φ ∈ [−π, π).
Emergence and existence of chimera states in nonlocally coupled FitzHugh–Nagumo neuronal oscillators in ab-

sence of time delay feedback and noise, are shown in Fig. 2, where uk, vk, ωk and Zk (for k = 1, 2, ..., N ) bears 
the same meaning as the variables ui, vi, ωi and Li (for i = 1, 2, .., N ). The snapshot of the amplitude of uk at a 
particular instant is plotted in Fig. 2(a). The incoherent population of the chimera state is scattered along the limit 
cycle whereas the coherent domain follows a smooth profile as illustrated in Fig. 2(b) where the black line denotes 
the nullcline of the FitzHugh–Nagumo model. The mean phase velocity ωk and local order parameter Zk are plotted 
respectively in Figs. 2(c) and 2(d) corresponding to the chimera profile observed in the Fig. 2(a). The robustness of 
the chimera state is also studied in the coupled FitzHugh–Nagumo systems in ref. [28]. Here authors investigated 
how this chimera state changes with respect to the induced heterogeneity in the local dynamics as well as in the 
network structure. It was commonly believed that chimera states can only appear in symmetrically coupled network 
with identical node. To overcome this limitation, they considered networks of nonidentical units with regular coupling 
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topology, and networks of homogeneous elements with irregular interaction topologies. They demonstrated that the 
chimera states are robust with respect to small heterogeneity in a symmetric nonlocal configuration with nonidentical 
oscillators and if inhomogeneity is increased the multiple incoherent regions get converted to a chimera state with 
a single incoherent region. On the other hand, random structural perturbation does not affect emergence of chimera 
states in a network of identical oscillators and even chimera states can be realized under the addition of large number 
of random links. These findings may be important in view of experiments as well as from application perspectives, 
since in real world situation, it is very difficult to find absolute identical units and also complex interaction topologies 
are rather common in nature. In this context, Hizanidis et al. [59] also investigated the emergence of chimera states 
in nonlocally coupled two and three dimensional Hindmarsh–Rose neuronal models and consequently they identified 
the existence of mixed oscillatory states where the desynchronized neurons were interspersed among either stationary 
or synchronized neurons.

Very recently, emergence of chimera states and other complex spatiotemporal patterns are studied in brain networks 
[93], where the network architecture consists of two types of connectivity such as, empirical structural brain network 
configuration and a simulated modular fractal topology. They simulated the epileptic seizures and enunciated that 
the proper tuning of the coupling parameter leads to initiation or termination of pathological synchrony that happens 
through chimera states. Correspondingly, they discussed synchronizability of the neuronal network against removal 
of nodes.

6.1.1. Chimera states via noisy electrical synapses
Noise are omnipresent in nature as well as in neuronal systems. Under the impact of noise, the emergence of 

chimera states were investigated in nonlocally coupled excitable systems in presence of electrical synapse [94]. 
Here noise plays a constructive role for the temporal motion of the chimera states in a network of identical units. 
The combination of temporal behavior of coherence resonance and the spatial properties of chimeras produced a 
Coherence-Resonance chimera state that corresponds to an alternating periodic spatial switching of the incoherent 
and coherent domains which is different from the classical chimera state observed in deterministic oscillatory sys-
tems. In presence of Gaussian white noise, the applicable coupled neuronal network is presented in Eq. (10). In 
absence of the time delayed feedback (i.e., γ = 0.0), four different regimes were observed depending on the respec-
tive values of the noise intensity D, as in Fig. 3, where the variation in spatiotemporal motions are described by the 
variables ui and local order parameter Zi , shown in extreme left and middle columns respectively. The extreme right 
column of the figure depicts the snapshots of Zi for different time instants. For lower values of the noise intensity 
(D < 0.000062), the entire network possesses the homogeneous steady state dynamics (cf. Fig. 3(a)) and for interme-
diate values of D (0.000062 ≤ D ≤ 0.000325), coherence resonance chimera states were observed. Slightly increased 
values of D > 0.000325 destroy such chimera patterns and the ensemble becomes incoherent in space but periodic in 
time. Further increasing the noise intensity to D = 0.1 (strong intensity) induced incoherent dynamics both in space 
and time.

6.1.2. Chimera states via delayed electrical synapses
Noise induced coherence resonance chimera state has also been investigated under the impact of time delayed 

feedback coupling in the network of nonlocally coupled FitzHugh–Nagumo oscillators. In ref. [95], authors articulated 
the controlling mechanism of such type of chimera patterns and they showed that the chimera region may get enlarged 
or shrinked with proper tuning of the delayed feedback strength. The shifts among different dynamical regimes, 
namely synchronization, steady state, spatially incoherent spiking and coherence resonance chimera were mapped 
against the noise intensity and systems’ parameter in presence of time delayed coupling.

6.2. Chimera states via chemical synapses

Here we will be discussing how a network of neurons interacting through chemical synapses may develop such in-
triguing chimera patterns. As far as the influence of network configuration is concerned, we will initiate our discussion 
with the simplest interaction scenarios of regular topologies.

First we discuss the remarkable finding of chimera and multichimera states in networks of bursting Hindmarsh–
Rose oscillators under local, non-local and global coupling architectures. Let us now consider a neuronal network of 
Hindmarsh–Rose systems with nonlocal interaction topology as the following:
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Fig. 3. Left and middle columns represent the spatiotemporal behavior of the state variable ui and local order parameter Zi respectively. The right 
column denotes the variation of Zi against i for particular time instants: (a) steady state behavior for D = 0; (b) coherence-resonance chimera 
whenever D = 0.0002. The black rectangle stands for the incoherent domain. (c) spatial incoherence but periodic nature in time for D = 0.0004; 
(d) incoherent in both space and time with D = 0.1. The other parameters are ε0 = 0.05, μi = μ = 1.001, σ = 0.4 and R = 0.12 and γ = 0. Here 
Zi bears the same connotation as Li in Eq. (9). Figure reproduced with permission from [94].

ẋi = axi
2 − xi

3 − yi − zi + ε
2P

(vs − xi)
i+P∑

j=i−P

cij�(xj (t − τ))

ẏi = (a + α)xi
2 − yi

żi = c(bxi − zi + e), i = 1,2, ...,N

(11)

N being the total number of neurons in the network and P the number of coupled nearest neighbors in each direction 
on a ring with R = P

N
as the coupling radius. Here ε is the chemical synaptic strength that connects the neurons in 

such a way that if i-th and j -th neurons are connected, then cij = 1, otherwise cij = 0 with cii = 0. The parameter 
τ is the time-delay required to propagate the information from j -th neuron to the i-th neuron. In neuronal networks, 
the time-delay in signal transmission between different units is inevitable and it may genuinely arise because of the 
reaction times at chemical synapses. The chemical synaptic coupling function �(x) is described by the sigmoidal 
nonlinear input–output function as

�(x) = 1
1+e−λ(x−�s) , (12)

with λ defining the slope of the function and �s is the synaptic threshold.
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Fig. 4. Snapshots of membrane potentials xi (black color) and the transformed variables w1,i = xi − xi+1 (red color) for different values of the 
chemical synaptic coupling strength ε characterizing: (a) incoherent state for ε = 1.0; (b) chimera state (with two synchronized and desynchronized 
domains) for ε = 1.2; (c) chimera state (with single incoherent group) for ε = 1.28; and (d) coherent state for ε = 1.3. The insets show the 
corresponding time evolutions of the neurons. Here N = 301. Figure reproduced with permission from [18]. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

The coupling range P controls the topology of the interactional structure, from local (nearest neighbor) to global 
(all-to-all) through nonlocal. Initially, we shall discuss the existence of chimera states in absence of the chemical 
synaptic delay τ . The authors in ref. [18] have demonstrated the emergence of chimera states for all possible values 
of P (even for local and global cases) quite elaborately. With P = N−1

2 corresponding to the global interaction, the 
snapshot of the membrane potentials xi and of the transformed variables defined as w1,i = xi − xi+1 are depicted 
in black and red dotted points, respectively in Fig. 4. The difference variable w1,i actually defines a local coherence 
between two neighboring neurons in such a way that if the two neurons oscillate synchronously then w1,i → 0 and 
w1,i obtains non-zero value if the neurons oscillate incoherently. For a comparatively lower chemical synaptic cou-
pling strength ε = 1.0, the network possesses incoherent (disordered) state, as in Fig. 4(a) with the inset showing 
square-wave nature of time-evolution of the neurons. Fig. 4(b) shows snapshots for xi and w1,i representing chimera 
pattern (with two incoherent domains) due to an increment in the synaptic strength ε = 1.2. Mixture of square-wave 
and plateau bursting is realized in all the neurons (cf. inset of Fig. 4(b)). Further increase in ε to ε = 1.28 leads the 
network experiencing chimera state having a single incoherent group of neurons, as shown in Fig. 4(c) with the inset 
showing coexistence of square-wave and plateau bursting, as before. For even higher ε = 1.30, Fig. 4(d) explains that 
the neurons follow plateau bursting dynamics and remain in coherent state. Here it is observed that increasing values 
of the chemical synaptic strength induce mixed type of bursting dynamics from a square wave bursting state for which 
the network exhibits multichimera and chimera states. For higher synaptic strength the neurons start following plateau 
bursting dynamics and consequently the network realizes coherent state.

The ref. [18] revealed that even when the neurons interact locally through chemical synapses without any time-
delay τ , the network may experience chimera patterns, unlike the case when only electrical synapses are the commu-
nicating medium among the neurons. Next we will be investigating what influence the chemical synaptic delay τ has 
on the evolution of the neuronal network with local (nearest neighbor) interaction.

In order to get a complete perception of the effect of τ on the dynamical behaviors of the network, the authors 
of ref. [25] rigorously plotted the two parameter phase diagram in the τ − ε plane for N = 200 locally coupled 
Hindmarsh–Rose neurons, as in Fig. 5. Here strength of incoherence is used as color bar in Fig. 5(a) to distinguish 
different dynamical states, namely incoherent, chimera and coherent states. Further to characterize chimera and multi-
chimera states separately, we plot the τ − ε plane in terms of discontinuity measure, shown in Fig. 5(b). Fig. 5(a) 
illustrates that whenever the delay τ is small, for increasing ε the network realizes chimera patterns (0 < SI < 1) me-
diating the incoherent (SI = 1) and coherent states (SI = 0) within the range ε ∈ [0, 4]. But interestingly, as τ exceeds 
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Fig. 5. Two-parameter phase diagram in τ − ε plane for N = 200 locally coupled Hindmarsh–Rose neurons. (a) Strength of incoherence is used 
in color bar to discriminate incoherent, chimera and coherent states; (b) The discontinuity measure is used to distinguish between chimera and 
multichimera states. Here M = 40 and δ0 = 0.05. Figure reproduced with permission from [25].

some certain value, the network does not reflect coherence any more for any of the considered values of ε. Moreover, 
the values of discontinuity measure in Fig. 5(b) confirms this in which green color indicates incoherent states, black 
represents coherent states, red for multichimera and blue is for chimera states.

Depending on the spatio-temporal motions of the neurons in the network, different type of chimera patterns have 
been observed. For instance, a novel dynamical phenomenon named imperfect traveling chimera state emerged due 
to local, synaptic gradient coupling in an ensemble of neurons following Hindmarsh–Rose bursting dynamics [24]. 
While the neuronal network goes through this dynamical state, the chimeric pattern travels over time in the spatio-
temporal domain. However, this travel is a bit erratic, as some neurons belonging to the synchronized domain enters 
into the traveling incoherent domain. Before going into the details, let us have a look at the network model:

ẋi = axi
2 − xi

3 − yi − zi + (vs − xi)[(ε + r)�(xi+1) + (ε − r)�(xi−1)],
ẏi = (a + α)xi

2 − yi,

żi = c(bxi − zi + e), i = 1,2, ...,N(≥ 3).

(13)

All the network parameters have the same meaning as before. In addition to them, here r accounts for the strength of 
gradient coupling. Considering the typical case of ε > r , one can see that the i-th neuron is connected to the (i + 1)-th 
neuron with synaptic interaction strength ε + r > 0 and connected to the (i − 1)-th neuron with synaptic coupling 
strength ε − r > 0, i = 1, 2, · · ·N . Thus all the neurons are coupled to their nearest neighbors through asymmetric 
excitatory synaptic interactions.

With a fixed value of the gradient coupling strength r = 0.2 and small ε � 0.5, the neuronal ensemble under-
goes through an incoherent (disordered) state. However for higher ε, the network starts experiencing a peculiar 
dynamical pattern of chimera state in which coherence and incoherence simultaneously appear but much more in-
terestingly the chimeric patterns travel over time in the spatiotemporal domain. Meanwhile, some neurons from 
the coherent domain join the traveling incoherent domain and thus the incoherent population expands to the co-
herent population signifying that the observed pattern does not resemble the pure traveling chimera state, rather 
indicates the emergence of a novel imperfect traveling chimera state. The manifestation of such a state is explained 
in Fig. 6. The spatiotemporal evolution of the membrane potentials xi, (i = 1, 2, · · ·, N) of all the neurons in 
the network are depicted in Fig. 6(a) for ε = 0.7 and r = 0.2 which shows that the chimera patterns are travel-
ing in space and time t ∈ [1000, 6000]. The spatial concurrence of coherent and incoherent states are discernible 
from the snapshot of the membrane potentials xi in Fig. 6(b). In pursuance of characterizing the chimera state, 
the local order parameters Li (cf. Eq. (9)) are plotted in Fig. 6(c). The red region corresponds to the synchro-
nized domain while the desynchronized domain is represented in blue. As can be seen, the width of the incoherent 
domain varies as it travels in the space and the incoherent domain expands which evidences the emergence of 
imperfect traveling chimera state. The plateau bursting mode of the individual neurons during this chimeric evo-
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Fig. 6. Imperfect traveling chimera state in a Hindmarsh–Rose neuronal network under asymmetric excitatory local coupling with ε > r : (a) Spa-
tiotemporal plot whenever ε = 0.7 and r = 0.2. (b) Snapshot of the membrane potentials xi at time t = 2000. Local order parameters Li with 
respect to neuron indices i. Red color represents coherent and blue signifies incoherent domains. (d) Time evolution of a particular neuron in the 
ensemble. Here N = 200. Figure reproduced with permission from [24].

lution is shown in Fig. 6(d). In the ref. [24], authors also discussed the other possible cases of one way local 
synaptic gradient coupling (ε = r) and simultaneous effect of the excitatory and inhibitory chemical interactions 
(ε < r). They found imperfect chimera in a very narrow region of the (ε − r) plane and the transition to the 
traveling chimera took place in the ε < r region. The time evolution of each neuron was also highlighted in this 
context.

The emergence of chimera-like states were investigated in a neuronal network model of cat brain [96] as well. 
The cerebral cortex of the cat can be divided in 65 cortical areas which are organized into the four cognitive re-
gions like visual, auditory, somatosensorymotor and frontolimbic. The local dynamics of each system was modeled 
through Hindmarsh–Rose neuronal oscillators. Depending on the connectivity matrix of the cat cerebral cortex, 
authors found two types chimera-like states such as spiking chimera-like states where spikes are in and bursting 
chimera-like state where bursts exhibit desynchronized dynamics. In addition, they also studied the existence of 
chimera-like states in the network under the influence of noise. For lower noise intensities, no significant change 
on the chimera-like states was identified but for stronger noise intensities, chimera-like states got suppressed and 
the neuronal network experienced neuronal network experienced desynchronized neuronal dynamics. They fur-
ther concluded that the more robust than the spiking chimera-like states under noisy impacts in the neuronal 
network.

6.3. Chimeras via electrical and chemical synapses

Next we move on to review the notable appearances of chimera states in neuronal networks in the presence of both 
electrical and chemical synaptic interactions. In order to perfectly model a neuronal network, focusing on any single 
type of connecting synapse may come at the expense of ignoring the other, because a structural neuronal network 
consists of connections from both electrical and chemical synapses.

To start with, we concentrate on the work regarding the emergence of chimera-like states in neuronal network 
proposed in the ref. [29] based on the nervous system of the nematode Caenorhabditis elegans (C. elegans) soil worm. 
Recently, lot of attention has been paid to the exploration of the nervous system of C. elegans and small-world topology 
[97–101] over a modular architecture has been identified. Particularly, a network organized in six communities, found 
through a community detection algorithm (walktrap method) is considered in [29]. Again, since the extent over which 
chemical synaptic function is much larger than that of the electrical synapses, so the electrical and chemical synapses 
are respectively presumed to operate within and across the communities. The network model is thus described in terms 
of the Hindmarsh–Rose local dynamics (cf. Eq. (2)) as the following:
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Fig. 7. The spatiotemporal dynamics of the membrane potentials pi (in left) together with the time series p100 for a particular neuron (in right) 
and a snapshot of the whole system (in bottom): for (a) k1 = 1.7, k2 = 0.015 from which synchronization is identified, (b) k1 = 0.7, k2 = 0.18
representing desynchronized state, (c) k1 = 0.5, k2 = 0.015 depicting chimera-like state. Here pi bears the same connotation as xi in Eq. (14). 
Figure reproduced with permission from [29].

ẋi = yi + ax2
i − x3

i − zi + J + k1

N∑
j=1

Aij (xj − xi) + k2(vs − xi)
N∑

j=1
Bij�(xj ),

ẏi = 1 − dx2
i − yi,

żi = c(b(xi − x0) − zi), i = 1,2, · · ·N.

(14)

Here a = 3.0, d = 5.0, c = 0.005, b = 4.0, x0 = −1.6 and J = 3.25 are chosen so as to keep the neurons in 
multi-scale chaotic dynamics and vs = 2.0 is taken so that the chemical coupling remains excitatory. Besides, Aij and 
Bij are the adjacency matrices respectively associated to the neuronal connections based on electrical and chemical 
synapses within and across the communities and k1, k2 are the corresponding coupling strengths. Fig. 7 shows how 
dynamical behavior of the whole network varies for changes in the values of k1 and k2. For instance, whenever k1 = 1.7
and k2 = 0.015, the network experiences coherent state which is shown in Fig. 7(a) while plotting the spatiotemporal 
evolution of the membrane potentials pi (here pi refers to xi in Eq. (14)) together with their snapshot and the typical 
time series of a particular neuron p100. On the other hand, the neurons in all the communities are desynchronized if 
k1 = 0.7 and k2 = 0.18 (cf. Fig. 7(b)). But interestingly, chimera-like coexistence of coherence and incoherence in the 
network emerged, shown in Fig. 7(c) when k1 = 0.5, k2 = 0.015 were chosen.

In the following, we would also like to mention that a number of neuronal developments are detected not only 
among coupled neurons in the same brain region, but also amidst uncoupled neuron groups in the same or different 
cortical areas. Besides, recent research corroborates that the multilayer structure of networks is the best formulation 
of so many natural and artificial systems [102–109]. So, the evidences of multilayer structure in neuronal system 
[110–113] directs the authors of ref. [33,35] to consider a multilayer network of Hindmarsh–Rose neuronal models 
(cf. Eq. (3)) composed of two layers, one of which is altogether uncoupled and the other one plays the role of a 
medium through which the neurons in the uncoupled layer communicate, and this layer is coupled in regular mode 
(locally, nonlocally or globally) through electrical synapses. Chemical synapses (in presence of delay) are presumed 
to interconnect the replica nodes of the two layers. Thus the dynamical equations representing the uncoupled layer 
reads as:
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Fig. 8. Membrane potential xi,1 snapshots representing chimera states in the uncoupled layer for (a) N = 22, Kch = 1.125, (b) N = 40, Kch = 1.15
and (c) N = 60, Kch = 1.16; Lower panels (d,e,f) respectively depict the associated mean angular frequencies ωi,1 for N = 22, 40, 60; (g) Two 
parameter phase diagram in the Kch − N plane. The regions corresponding to incoherent, chimera and coherent states are in yellow, red and blue 
respectively. Strength of incoherence is used to distinguish these dynamical states. The points A, B and C conform to the values of Kch and N used 
in (a,d), (b,e) and (c,f) respectively. Figure reproduced with permission from [33].

ẋi,1 = ax2
i,1 − x3

i,1 − yi,1 − zi,1 + Kch(vs − xi,1)�(xi,2(t − τ)),

ẏi,1 = (a + α)x2
i,1 − yi,1,

żi,1 = c(bxi,1 − zi,1 + e), i = 1,2, · · ·,N,

(15)

and that for the coupled layer becomes

ẋi,2 = ax2
i,2 − x3

i,2 − yi,2 − zi,2 + Kch(vs − xi,2)�(xi,1(t − τ)) + Kel

i+P∑
j=i−P

(xj,2 − xi,2),

ẏi,2 = (a + α)x2
i,2 − yi,2,

żi,2 = c(bxi,2 − zi,2 + e), i = 1,2, · · ·,N,

(16)

where (xi,1, yi,1, zi,1) and (xi,2, yi,2, zi,2) are the state variables for the neurons in uncoupled and coupled layers 
respectively, N being the number of neurons in each of the layers of network. Kel and Kch respectively accounts 
for the electrical and chemical synaptic coupling strengths with τ being the time-delay due to the reaction times at 
chemical synapses. Here P is the coupling range and R = P

N
is entitled as coupling radius as before.

We will start while concentrating on the multilayer network comprising of uncoupled and globally coupled layers, 
that is when the coupling range P = N

2 is maximum in the coupled layer and there is no time delay in the chemical 
synapses.

In absence of the chemical synapses across the layers, the coupled layer easily becomes synchronized because 
of the global (all-to-all) interaction among the neurons with electrical synapses. Then the investigation on such a 
framework reveals that chimera state may emerge as a link between disordered and coherent states, in the uncoupled 
layer depending on the strength of the inter layer chemical synapses. Particularly, with an increment in the number of 
neurons in the uncoupled layer (and that in the coupled layer with replicas connected), an emergence of chimera states 
can be realized in the uncoupled layer. In order to explore this scenario, we start with minimal possible number of 
neurons in both the layers but chimera states could not be found for any value of Kch unless N ≥ 22, depicted in Fig. 8. 
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Fig. 9. Two parameter phase diagram in the R − Kch plane where incoherent, synchronous chimera, synchronous cluster, and coherent regions are 
respectively in yellow, blue, black, and red colors for (a) τ = 0.5, (b) τ = 2.4 and (c) τ = 4.0. Here Kel = 0.005 is fixed with N = 105. Figure 
reproduced with permission from [35].

This essentially means chimera patterns can be realized in such a network formalism with as few as N = 22 neurons 
in each layer. Whenever N = 22, chimera states are observed for a narrow range of Kch ∈ [1.12, 1.13], otherwise 
promoting incoherent or coherent states for lower and higher Kch respectively. The appearance of chimera state in the 
layer of uncoupled neurons for N = 22 is explained by plotting the snapshot of membrane potentials xi,1 in Fig. 8(a) 
for Kch = 1.125 where the layer spontaneously splits into incoherent domains mediated by a coherent one, resembling 
the characteristic of a chimera state. Increasing the number of neurons in the layers, not only the chimeras continue 
to be subsistent, but also it broadens the range of Kch for which chimera emerges. The former assertion is illustrated 
through the snapshots of xi,1 for N = 40 and N = 60 with Kch = 1.15 and Kch = 1.16 respectively in Figs. 8(b) and 
8(c). For further confirmation of chimera patterns, mean angular frequency ωi,1 of the i-th neuron in the uncoupled 
layer is calculated as

ωi,1 = 〈φ̇i,1〉t = xi,1ẏi,1 − yi,1ẋi,1

x2
i,1 + y2

i,1

,

where φi,1 = arctan(yi,1/xi,1) is the geometric phase of the i-th neuron, as discussed above and 〈...〉t represents long 
time average. Figs. 8(d, e, f) respectively depict the mean angular frequencies ωi,1 (calculated over 5 × 105 time units 
after an initial transient of 3 ×105 units) of all the neurons corresponding to Figs. 8(a, b, c) that possess random values 
in the incoherent domains while exhibiting identical values for the coherent domain. In order to elucidate the latter 
scenario of nodal effect on Kch, we plot the two-parameter phase diagram in the N − Kch plane in Fig. 8(g) for the 
range of N ∈ [10, 100] and Kch ∈ [1.0, 1.5]. From the figure, the expansion of the chimera region in terms of Kch

for increasing density N of neurons is obvious.
Without restraining the coupled layer to the fully coherent state under globally coupled formulation, the authors 

of ref. [35] detected two interesting dynamical states, namely synchronous chimera and synchronous cluster states 
between the layers. In these states, groups of neurons in each layer go through the same dynamical behavior with the 
same group of replica neurons in the other layer, while the individual layers exhibit chimera and cluster (synchro-
nized) states respectively. Additionally, the influence of inter-layer chemical synaptic delay in eradicating the cluster, 
coherent patterns and reinstating the chimeras has also been explained. For instance, phase diagrams in the R − Kch

parameter plane for different values of the time-delay τ are depicted in Fig. 9. Whenever the delay τ = 0.5 is compar-
atively smaller, then according to Fig. 9(a), for all possible values of R, incoherent (in yellow), synchronous chimera 
(in blue), synchronous cluster (in black) and coherent states (in red) appear with increasing Kch. Importantly enough, 
for a higher time-delay τ = 2.4, cluster state does not exist in the parameter plane of Fig. 9(b) and the chimera state 
takes up that space in the phase diagram. As the delay τ further increases to τ = 4.0, even the coherent state tends to 
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disappear from the figure (cf. Fig. 9(c)) and it is the chimera pattern that emanates as Kch increases, irrespective of 
the value of the coupling radius R. This way the imminent time delay due to chemical synapses favors the appearance 
of synchronous chimera states while slackening the advancements of cluster or coherent states.

7. Summary and future prospects

Over the last two decades, complex biological networks [114] has been a rapidly growing research field because 
of its potential applications. The theory of complex biological network helps a lot to understand several emergent 
behavior arising in biological systems ranging from food webs to human brain. Through this review, we have tried 
to provide a profound excerpt of recent research efforts that explore the emergence of chimera states in networks of 
neuronal systems. We present our study with an everlasting intention of grasping how this phenomenal spatiotemporal 
pattern may emanate in neuronal networks depending on the variability in the fashion of interactions among the 
neurons. The applicabilities of chimera-like coexistence of coherence and incoherence from the viewpoint of neuronal 
activities are dealt with in Section 2. For example, chimera patterns have strong reflection to the neuronal bump states 
that correspond to localized regions of oscillatory coherence surrounded by incoherence. The natural phenomenon 
of unihemispheric slow wave sleep observed in some mammals and migratory birds has also got resemblance to the 
chimeric behavior. Moreover, various types of pathological brain states, such as Alzheimer’s disease, epilepsy, autism, 
schizophrenia and brain tumors are reminiscent to dynamical chimera states found in networks of coupled oscillators.

In Section 3, we have described the FitzHugh–Nagumo and Hindmarsh–Rose neuronal models that are predom-
inantly used in the nonlinear dynamics literature in order to explore collective dynamics that may arise in neuronal 
networks, in particular for the case of chimera-like patterns. A view of possible synaptic communication modes is 
provided in Section 4. Section 5 deals with the general model description of a neuronal network followed by the 
details of the quantitative measures (such as strength of incoherence, discontinuity measure, mean phase velocity and 
local order parameter) used to discriminate diverse dynamical phenomenon observed in the literature.

In Section 6, we have reviewed some recent studies investigating the origination of chimera-like states in neuronal 
systems, especially pinpointed on different synaptic interactional constructions of the networks. Section 6.1 deals with 
the emergence of chimera in neuronal networks in the sole presence of electrical synapses for which non-delayed, 
delayed and noisy electrical synapses are ascertained. The mechanisms of chimera transitions for only the chemical 
synapses are explained in Section 6.2 where the effects of time-delay due to the reaction times at chemical synapses 
as well as that of asymmetric excitatory synapses are investigated. Next Section 6.3 is devoted to the case in which 
chimera appears due to the presence of both electrical and chemical synapses. For this, the modular network structure 
based on the connectome of C. elegans is first considered followed by the multilayer formalism of neuronal networks 
comprising of coupled and uncoupled layers with and without chemical synaptic delays.

Because of its immense relevance in view of neuroscience, study of chimera states has got special attention of 
researchers over the years. Notably, since the seminal work by Kuramoto et al. [8] for ensemble of phase oscillators in 
the year of 2002, many of the crucial developments have been made, particularly in networks of neuronal systems. In 
spite of that, we would like to mention some of the significant routes of further research on chimera study in neuronal 
systems. For example,

1. Very recently, non-synaptic (ephaptic) communication among the neurons and emergence of alternating chimeras 
[115] has been shown to be fascinating enough to investigate. This is mainly because, so far, the inspection of 
such a peculiar pattern in neuronal networks has been mostly confined to the sole presence of synaptic interac-
tions (electrical and/or chemical). Consequently, the possibility in manifestation of much more complex chimeric 
patterns owing to the simultaneity of synaptic and ephaptic interactions in neuronal networks, can be visualized 
as a promising future direction.

2. The study of control of chimeras in neuronal networks under chemical synaptic scenarios and independent of the 
network topology will be quite significant. Earlier, the authors of [116] described pinning control of coherent and 
incoherent domains in chimera patterns for ensembles of nonlocally coupled FitzHugh–Nagumo systems. Also a 
control strategy was presented [117] in nonlocally coupled FitzHugh–Nagumo elements, based on the inclusion 
of excitable dynamical units. Bick et al. [118] came up with a scheme based upon gradient dynamics that assisted 
the chimera patterns in attaining any desired positions, for coupled phase oscillators.
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3. Next, the question of some theoretical foundations of chimera study under the non-linear chemical synaptic func-
tion as the interacting medium, is yet to be answered.

4. Also the issue of robustness of chimera states in neuronal systems against structural perturbations in presence of 
chemical and/or both electrical and chemical synapses is still unresolved.

5. The neuronal interaction mechanism through synapses are not really static. Rather, the connectivity patterns are 
sporadic that changes over time. But, because of its complexity, so far almost all the works on chimera states 
in neuronal systems have neglected this issue of time varying inter-connections among neurons and presumed 
static persistent network topologies only. So, it would be really significant to investigate the possible emergence 
of chimera-like patterns in neuronal networks that contemplates with temporal synaptic connections.

6. Few experimental verifications of chimera states have been done while considering setups as networks of opto-
electronic oscillators, mechanical oscillators (metronomes), electronic circuits etc. But from the neurobiological 
point of view, there is no experimental verification on chimera states done yet. So, experimental detection of 
chimera states may lead to more interesting prospects in neuroscience.

7. Although there exists a few works concerning basin of attraction for the chimera states [119,120], precise study 
on the influence of initial conditions in inducing chimera patterns in neuronal networks is missing.

8. Because of the severe complexity of brain network, chimera studies should also aim to explore the same in more 
complex topologies, particularly, in networks of interconnected networks of neuronal systems.

9. Slow-fast dynamics are often present in neuronal systems. It will be very interesting to study whether multi time 
scale separation is a prerequisite criteria for the emergence of chimera states in such ensembles. Also in this 
regard, one can investigate different types of chimera patterns for varying bursting and spiking regimes.

Acknowledgements

Dibakar Ghosh was supported by the Department of Science and Technology of the Government of India (Grant 
EMR/2016/001039). Matjaž Perc was supported by the Slovenian Research Agency (Grants J1-7009 and P5-0027).

References

[1] Sporns O. Structure and function of complex brain networks. Dialogues Clin Neurosci 2013;15:247.
[2] Pereda AE. Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci 2014;15:250.
[3] Pikovsky A, Rosenblum M, Kurths J. Synchronization: a universal concept in nonlinear sciences. Cambridge University Press; 2003.
[4] Boccaletti S, Kurths J, Osipov G, Valladares D, Zhou C. The synchronization of chaotic systems. Phys Rep 2002;366:1–101.
[5] Pecora LM, Carroll TL. Synchronization of chaotic systems. Chaos 2015;25:097611.
[6] Fell J, Axmacher N. The role of phase synchronization in memory processes. Nat Rev Neurosci 2011;12:105.
[7] Benedek M, Bergner S, Könen T, Fink A, Neubauer AC. Eeg alpha synchronization is related to top-down processing in convergent and 

divergent thinking. Neuropsychologia 2011;49:3505.
[8] Kuramoto Y, Battogtokh D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom Complex 

Syst 2002;5(4):380.
[9] Panaggio MJ, Abrams DM. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 

2015;28(3):R67.
[10] Bera BK, Majhi S, Ghosh D, Perc M. Chimera states: effects of different coupling topologies. Europhys Lett 2017;118:10001.
[11] Omelchenko OE. The mathematics behind chimera states. Nonlinearity 2018;31:R121.
[12] Abrams DM, Strogatz SH. Chimera states for coupled oscillators. Phys Rev Lett 2004;93:174102.
[13] Abrams DM, Mirollo R, Strogatz SH, Wiley DA. Solvable model for chimera states of coupled oscillators. Phys Rev Lett 2008;101:084103.
[14] Motter AE. Nonlinear dynamics: spontaneous synchrony breaking. Nat Phys 2010;6:164.
[15] Martens EA, Laing CR, Strogatz SH. Solvable model of spiral wave chimeras. Phys Rev Lett 2010;104:044101.
[16] Omelchenko I, Maistrenko Y, Hövel P, Schöll E. Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys Rev Lett 

2011;106:234102.
[17] Omelchenko I, Riemenschneider B, Hövel P, Maistrenko Y, Schöll E. Transition from spatial coherence to incoherence in coupled chaotic 

systems. Phys Rev E 2012;85:026212.
[18] Bera BK, Ghosh D, Lakshmanan M. Chimera states in bursting neurons. Phys Rev E 2016;93:012205.
[19] Schmidt L, Krischer K. Clustering as a prerequisite for chimera states in globally coupled systems. Phys Rev Lett 2015;114:034101.
[20] Yeldesbay A, Pikovsky A, Rosenblum M. Chimeralike states in an ensemble of globally coupled oscillators. Phys Rev Lett 2014;112:144103.
[21] Chandrasekar VK, Gopal R, Venkatesan A, Lakshmanan M. Mechanism for intensity-induced chimera states in globally coupled oscillators. 

Phys Rev E 2014;90:062913.
[22] Premalatha K, Chandrasekar V, Senthilvelan M, Lakshmanan M. Impact of symmetry breaking in networks of globally coupled oscillators. 

Phys Rev E 2015;91:052915.

http://refhub.elsevier.com/S1571-0645(18)30108-8/bib73706F726E7332303133737472756374757265s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib70657265646132303134656C656374726963616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib70696B6F76736B793230303373796E6368726F6E697A6174696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib626F6363616C657474693230303273796E6368726F6E697A6174696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib7065636F72613230313573796E6368726F6E697A6174696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib66656C6C32303131726F6C65s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib62656E6564656B32303131656567s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib62656E6564656B32303131656567s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6B7572616D6F746F32303032636F6578697374656E6365s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6B7572616D6F746F32303032636F6578697374656E6365s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib70616E616767696F323031356368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib70616E616767696F323031356368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib62657261323031376368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6F6D656C323031386D617468656D6174696373s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib616272616D73323030346368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib616272616D7332303038736F6C7661626C65s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D6F74746572323031306E6F6E6C696E656172s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D617274656E7332303130736F6C7661626C65s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6F6D656C6368656E6B6F323031316F6D656C6368656E6B6Fs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6F6D656C6368656E6B6F323031316F6D656C6368656E6B6Fs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6F6D656C6368656E6B6F323031326F6D656C6368656E6B6Fs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6F6D656C6368656E6B6F323031326F6D656C6368656E6B6Fs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib62657261323031366368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib7363686D69647432303135636C7573746572696E67s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib79656C646573626179323031346368696D6572616C696B65s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6368616E64726173656B6172323031346D656368616E69736Ds1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6368616E64726173656B6172323031346D656368616E69736Ds1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib7072656D616C6174686132303135696D70616374s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib7072656D616C6174686132303135696D70616374s1


S. Majhi et al. / Physics of Life Reviews 28 (2019) 100–121 119
[23] Mishra A, Hens C, Bose M, Roy PK, Dana SK. Chimeralike states in a network of oscillators under attractive and repulsive global coupling. 
Phys Rev E 2015;92:062920.

[24] Bera BK, Ghosh D, Banerjee T. Imperfect traveling chimera states induced by local synaptic gradient coupling. Phys Rev E 2016;94:012215.
[25] Bera BK, Ghosh D. Chimera states in purely local delay-coupled oscillators. Phys Rev E 2016;93:052223.
[26] Laing CR. Chimeras in networks with purely local coupling. Phys Rev E 2015;92:050904.
[27] Kundu S, Majhi S, Bera BK, Ghosh D, Lakshmanan M. Chimera states in two-dimensional networks of locally coupled oscillators. Phys Rev 

E 2018;97:022201.
[28] Omelchenko I, Provata A, Hizanidis J, Schöll E, Hövel P. Robustness of chimera states for coupled FitzHugh–Nagumo oscillators. Phys Rev 

E 2015;91:022917.
[29] Hizanidis J, Kouvaris NE, Zamora-López G, Díaz-Guilera A, Antonopoulos CG. Chimera-like states in modular neural networks. Sci Rep 

2016;6:19845.
[30] Zhu Y, Zheng Z, Yang J. Chimera states on complex networks. Phys Rev E 2014;89:022914.
[31] Buscarino A, Frasca M, Gambuzza LV, Hövel P. Chimera states in time-varying complex networks. Phys Rev E 2015;91:022817.
[32] Yao N, Huang Z-G, Lai Y-C, Zheng Z-G. Robustness of chimera states in complex dynamical systems. Sci Rep 2013;3:3522.
[33] Majhi S, Perc M, Ghosh D. Chimera states in uncoupled neurons induced by a multilayer structure. Sci Rep 2016;6:39033.
[34] Maksimenko VA, Makarov VV, Bera BK, Ghosh D, Dana SK, Goremyko MV, et al. Excitation and suppression of chimera states by multi-

plexing. Phys Rev E 2016;94:052205.
[35] Majhi S, Perc M, Ghosh D. Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 2017;27:073109.
[36] Maksimenko V, Goremyko M, Makarov V, Hramov A, Ghosh D, Bera B, et al. Excitation and suppression of chimeric states in the multilayer 

network of oscillators with nonlocal coupling. Bull Russ Acad Sci, Phys 2017;81:110–3.
[37] Bera BK, Ghosh D, Parmananda P, Osipov G, Dana SK. Coexisting synchronous and asynchronous states in locally coupled array of oscil-

lators by partial self-feedback control. Chaos 2017;27:073108.
[38] Goremyko M, Maksimenko V, Makarov V, Ghosh D, Bera B, Dana S, et al. Interaction of chimera states in a multilayered network of 

nonlocally coupled oscillators. Tech Phys Lett 2017;43:712–5.
[39] Ghosh S, Jalan S. Emergence of chimera in multiplex network. Int J Bifurc Chaos 2016;26:1650120.
[40] Goremyko MV, Maksimenko VA, Makarov VV, Ghosh D, Bera BK, Dana SK, et al. Numerical analysis of the chimera states in the mul-

tilayered network model. In: Dynamics and Fluctuations in Biomedical Photonics XIV, vol. 10063. International Society for Optics and 
Photonics; 2017:100631J.

[41] Ghosh S, Kumar A, Zakharova A, Jalan S. Birth and death of chimera: interplay of delay and multiplexing. Europhys Lett 2016;115:60005.
[42] Ko T-W, Ermentrout GB. Partially locked states in coupled oscillators due to inhomogeneous coupling. Phys Rev E 2008;78:016203.
[43] Laing CR. The dynamics of chimera states in heterogeneous Kuramoto networks. Physica D 2009;238:1569–88.
[44] Laing CR. Chimera states in heterogeneous networks. Chaos 2009;19:013113.
[45] Wolfrum M, Omelchenko OE, Yanchuk S, Maistrenko YL. Spectral properties of chimera states. Chaos 2011;21:013112.
[46] Hagerstrom AM, Murphy TE, Roy R, Hövel P, Omelchenko I, Schöll E. Experimental observation of chimeras in coupled-map lattices. Nat 

Phys 2012;8:658.
[47] Tinsley MR, Nkomo S, Showalter K. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat Phys 2012;8:662.
[48] Martens EA, Thutupalli S, Fourrière A, Hallatschek O. Chimera states in mechanical oscillator networks. Proc Natl Acad Sci USA 

2013;110:10563.
[49] Lazarides N, Neofotistos G, Tsironis G. Chimeras in squid metamaterials. Phys Rev B 2015;91:054303.
[50] Larger L, Penkovsky B, Maistrenko Y. Virtual chimera states for delayed-feedback systems. Phys Rev Lett 2013;111(5):054103.
[51] Maistrenko Y, Sudakov O, Osiv O, Maistrenko V. Chimera states in three dimensions. New J Phys 2015;17:073037.
[52] Shima S-i, Kuramoto Y. Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys Rev E 2004;69:036213.
[53] Gu C, St-Yves G, Davidsen J. Spiral wave chimeras in complex oscillatory and chaotic systems. Phys Rev Lett 2013;111:134101.
[54] Nkomo S, Tinsley MR, Showalter K. Chimera states in populations of nonlocally coupled chemical oscillators. Phys Rev Lett 

2013;110:244102.
[55] Totz JF, Rode J, Tinsley MR, Showalter K, Engel H. Spiral wave chimera states in large populations of coupled chemical oscillators. Nat 

Phys 2018;14:282.
[56] Li B-W, Dierckx H. Spiral wave chimeras in locally coupled oscillator systems. Phys Rev E 2016;93:020202.
[57] Omelchenko I, Omelchenko E, Hövel P, Schöll E. When nonlocal coupling between oscillators becomes stronger: patched synchrony or 

multichimera states. Phys Rev Lett 2013;110:224101.
[58] Vüllings A, Hizanidis J, Omelchenko I, Hövel P. Clustered chimera states in systems of type-i excitability. New J Phys 2014;16:123039.
[59] Hizanidis J, Kanas VG, Bezerianos A, Bountis T. Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models. Int J 

Bifurc Chaos 2014;24:1450030.
[60] Schmidt A, Kasimatis T, Hizanidis J, Provata A, Hövel P. Chimera patterns in two-dimensional networks of coupled neurons. Phys Rev E 

2017;95:032224.
[61] Mishra A, Saha S, Ghosh D, Osipov GV, Dana SK. Traveling chimera pattern in a neuronal network under local gap junctional and nonlocal 

chemical synaptic interactions. Opera Medica Physiol 2017;3:14.
[62] Tsigkri-DeSmedt ND, Hizanidis J, Schöll E, Hövel P, Provata A. Chimeras in leaky integrate-and-fire neural networks: effects of reflecting 

connectivities. Eur Phys J B 2017;90:139.
[63] Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 

2006;52:155–68.
[64] Tognoli E, Kelso JS. The metastable brain. Neuron 2014;81:35–48.

http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D6973687261323031356368696D6572616C696B65s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D6973687261323031356368696D6572616C696B65s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6265726132303136696D70657266656374s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib62657261323031366368696D65726164s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6C61696E67323031356368696D65726173s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6B756E6475323031386368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6B756E6475323031386368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6F6D656C6368656E6B6F32303135726F627573746E657373s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6F6D656C6368656E6B6F32303135726F627573746E657373s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib68697A616E69646973323031366368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib68697A616E69646973323031366368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib7A6875323031346368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib627573636172696E6F323031356368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib79616F32303133726F627573746E657373s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D616A6869323031366368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D616B73696D656E6B6F3230313665786369746174696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D616B73696D656E6B6F3230313665786369746174696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D616A6869323031376368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D616B73696D656E6B6F3230313765786369746174696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D616B73696D656E6B6F3230313765786369746174696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6265726132303137636F6578697374696E67s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6265726132303137636F6578697374696E67s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib676F72656D796B6F32303137696E746572616374696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib676F72656D796B6F32303137696E746572616374696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib67686F736832303136656D657267656E6365s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib676F72656D796B6F323031376E756D65726963616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib676F72656D796B6F323031376E756D65726963616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib676F72656D796B6F323031376E756D65726963616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib67686F7368323031366269727468s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6B6F323030387061727469616C6C79s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6C61696E673230303964796E616D696373s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6C61696E67323030396368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib776F6C6672756D323031316Ds1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib68616765727374726F6D323031326578706572696D656E74616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib68616765727374726F6D323031326578706572696D656E74616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib74696E736C6579323031326368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D617274656E73323031336561s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D617274656E73323031336561s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6C617A617269646573323031356368696D65726173s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6C6172676572323031337669727475616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D6169737472656E6B6F323031356368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib7368696D6132303034726F746174696E67s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib67753230313373706972616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6E6B6F6D6F323031336368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6E6B6F6D6F323031336368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib746F747A3230313873706972616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib746F747A3230313873706972616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6C693230313673706972616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6F6D656C6368656E6B6F323031336E6F6E6C6F63616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6F6D656C6368656E6B6F323031336E6F6E6C6F63616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib76756C6C696E677332303134636C75737465726564s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib68697A616E69646973323031346368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib68697A616E69646973323031346368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib7363686D696474323031376368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib7363686D696474323031376368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D69736872613230313774726176656C696E67s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D69736872613230313774726176656C696E67s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib747369676B7269323031376368696D65726173s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib747369676B7269323031376368696D65726173s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib75686C68616173323030366E657572616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib75686C68616173323030366E657572616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib746F676E6F6C69323031346D657461737461626C65s1


120 S. Majhi et al. / Physics of Life Reviews 28 (2019) 100–121
[65] Gray CM, König P, Engel AK, Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects 
global stimulus properties. Nature 1989;338:334.

[66] Steriade M, Llinás R. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 1988;68:649.
[67] Larson J, Lynch G. Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science 1986;232:985.
[68] Izhikevich EM. Neural excitability, spiking and bursting. Int J Bifurc Chaos 2000;10:1171–266.
[69] Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw 2003;14:1569–72.
[70] Izhikevich EM. Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 2004;15:1063–70.
[71] Laing CR. Fronts and bumps in spatially extended Kuramoto networks. Physica D 2011;240:1960.
[72] Laing CR, Chow CC. Stationary bumps in networks of spiking neurons. Neural Comput 2001;13:1473–94.
[73] Glaze TA, Lewis S, Bahar S. Chimera states in a Hodgkin–Huxley model of thermally sensitive neurons. Chaos 2016;26:083119.
[74] Rattenborg NC. Do birds sleep in flight? Naturwissenschaften 2006;93:413–25.
[75] Rattenborg NC, Amlaner C, Lima S. Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci Biobe-

hav Rev 2000;24:817–42.
[76] Mukhametov L, Supin A, Polyakova I. Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins links open 

overlay panel. Brain Res 1977;134:581.
[77] Ma R, Wang J, Liu Z. Robust features of chimera states and the implementation of alternating chimera states. Europhys Lett 2010;91:40006.
[78] Roelfsema PR, Engel AK, König P, Singer W. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. 

Nature 1997;385:157.
[79] Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 

2003;18:357–63.
[80] Heimer G, Rivlin M, Israel Z, Bergman H. Synchronizing activity of basal ganglia and pathophysiology of Parkinson’s disease. J Neural 

Transm 2006;70(Suppl):17–20.
[81] König T, Prichep L, Dierks T, Hubl D, Wahlund L, John E, et al. Decreased eeg synchronization in Alzheimer’s disease and mild cognitive 

impairment. Neurobiol Aging 2005;26:165–71.
[82] Carlen PL, Skinner F, Zhang L, Naus C, Kushnir M, Velazquez JLP. The role of gap junctions in seizures. Brains Res Rev 2000;32:235–41.
[83] Dominguez LG, Wennberg RA, Gaetz W, Cheyne D, Snead OC, Velazquez JLP. Enhanced synchrony in epileptiform activity? local versus 

distant phase synchronization in generalized seizures. J Neurosci 2005;25:8077–84.
[84] Uhlhaas PJ, Linden DE, Singer W, Haenschel C, Lindner M, Maurer K, et al. Dysfunctional long-range coordination of neural activity during 

gestalt perception in schizophrenia. J Neurosci 2006;26:8168–75.
[85] Rabinovich MI, Varona P, Selverston AI, Abarbanel HD. Dynamical principles in neuroscience. Rev Mod Phys 2006;78:1213.
[86] Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 

1952;117:500–44.
[87] FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1961;1:445–66.
[88] Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc IRE 1962;50:2061–70.
[89] Hindmarsh JL, Rose R. A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B 

1984;221:87–102.
[90] Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R. Electrical synapses: a dynamic signaling system that shapes the activity 

of neuronal networks. Biochim Biophys Acta 2004;1662:113.
[91] Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. New York: McGraw-Hill, Health Professions Division; 2000.
[92] Gopal R, Chandrasekar V, Venkatesan A, Lakshmanan M. Observation and characterization of chimera states in coupled dynamical systems 

with nonlocal coupling. Phys Rev E 2014;89:052914.
[93] Chouzouris T, Omelchenko I, Zakharova A, Hlinka J, Jiruska P, Schöll E. Chimera states in brain networks: empirical neural vs. modular 

fractal connectivity. Chaos 2018;28:045112.
[94] Semenova N, Zakharova A, Anishchenko V, Schöll E. Coherence-resonance chimeras in a network of excitable elements. Phys Rev Lett 

2016;117:014102.
[95] Zakharova A, Semenova N, Anishchenko V, Schöll E. Time-delayed feedback control of coherence resonance chimeras. Chaos 

2017;27:114320.
[96] Santos M, Szezech J, Borges F, Iaroszc K, Caldas I, Batista A, et al. Chimera-like states in a neuronal network model of the cat brain. Chaos 

Solitons Fractals 2017;101:86–91.
[97] Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist 2006;12:512–23.
[98] Bassett DS, Bullmore ET. Small-world brain networks revisited. Neuroscientist 2017;23:499–516.
[99] Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world human brain functional network with 

highly connected association cortical hubs. J Neurosci 2006;26:63–72.
[100] Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, et al. Parcellation-dependent small-world brain functional networks: a resting-state fmri 

study. Hum Brain Mapp 2009;30:1511–23.
[101] He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from mri. Cereb Cortex 

2007;17:2407–19.
[102] Boccaletti S, Bianconi G, Criado R, Del Genio CI, Gómez-Gardenes J, Romance M, et al. The structure and dynamics of multilayer networks. 

Phys Rep 2014;544:1–122.
[103] Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. Multilayer networks. J Complex Netw 2014;2:203–71.
[104] Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S. Catastrophic cascade of failures in interdependent networks. Nature 2010;464:1025.
[105] Gao J, Buldyrev SV, Stanley HE, Havlin S. Networks formed from interdependent networks. Nat Phys 2012;8:40.

http://refhub.elsevier.com/S1571-0645(18)30108-8/bib67726179313938396F7363696C6C61746F7279s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib67726179313938396F7363696C6C61746F7279s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib73746572696164653139383866756E6374696F6E616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6C6172736F6E31393836696E74726F64756374696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib697A68696B6576696368323030306E657572616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib697A68696B65766963683230303373696D706C65s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib697A68696B6576696368323030346D6F64656Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6C61696E673230313166726F6E7473s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6C61696E673230303173746174696F6E617279s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib676C617A65323031366368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib72617474656E626F7267323030366269726473s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib72617474656E626F7267323030306265686176696F72616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib72617474656E626F7267323030306265686176696F72616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D756B68617665746F7631393737696E74657268656D6973706865726963s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D756B68617665746F7631393737696E74657268656D6973706865726963s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6D6132303130726F62757374s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib726F656C6673656D6131393937766973756F6D6F746F72s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib726F656C6673656D6131393937766973756F6D6F746F72s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib62726F776E323030336F7363696C6C61746F7279s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib62726F776E323030336F7363696C6C61746F7279s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6865696D65723230303673796E6368726F6E697A696E67s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6865696D65723230303673796E6368726F6E697A696E67s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6B6F6E696732303035646563726561736564s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6B6F6E696732303035646563726561736564s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6361726C656E32303030726F6C65s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib646F6D696E6775657A32303035656E68616E636564s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib646F6D696E6775657A32303035656E68616E636564s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib75686C686161733230303664797366756E6374696F6E616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib75686C686161733230303664797366756E6374696F6E616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib726162696E6F766963683230303664796E616D6963616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib686F64676B696E313935327175616E7469746174697665s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib686F64676B696E313935327175616E7469746174697665s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6669747A6875676831393631696D70756C736573s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6E6167756D6F31393632616374697665s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib68696E646D61727368313938346D6F64656Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib68696E646D61727368313938346D6F64656Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib686F726D757A646932303034656C656374726963616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib686F726D757A646932303034656C656374726963616Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6B616E64656C323030307072696E6369706C6573s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib676F70616C323031346F62736572766174696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib676F70616C323031346F62736572766174696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib63686F757A6F75726973323031386368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib63686F757A6F75726973323031386368696D657261s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib73656D656E6F766132303136636F686572656E6365s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib73656D656E6F766132303136636F686572656E6365s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib7A616B6861726F76613230313774696D6564656C61796564s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib7A616B6861726F76613230313774696D6564656C61796564s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib73616E746F73323031376368696D6572616C696B65s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib73616E746F73323031376368696D6572616C696B65s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6261737365747432303036736D616C6Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6261737365747432303137736D616C6Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib61636861726432303036726573696C69656E74s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib61636861726432303036726573696C69656E74s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib77616E673230303970617263656C6C6174696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib77616E673230303970617263656C6C6174696F6Es1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib686532303037736D616C6Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib686532303037736D616C6Cs1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib626F6363616C6574746932303134737472756374757265s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib626F6363616C6574746932303134737472756374757265s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib6B6976656C61323031346D756C74696C61796572s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib62756C647972657632303130636174617374726F70686963s1
http://refhub.elsevier.com/S1571-0645(18)30108-8/bib67616F323031326E6574776F726B73s1


S. Majhi et al. / Physics of Life Reviews 28 (2019) 100–121 121
[106] Helbing D. Globally networked risks and how to respond. Nature 2013;497:51.
[107] De Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter MA, et al. Mathematical formulation of multilayer networks. Phys 

Rev X 2013;3:041022.
[108] Podobnik B, Horvatic D, Lipic T, Perc M, Buldú JM, Stanley HE. The cost of attack in competing networks. J R Soc Interface 

2015;12:20150770.
[109] Nicosia V, Bianconi G, Latora V, Barthelemy M. Growing multiplex networks. Phys Rev Lett 2013;111:058701.
[110] Shepherd GM. The synaptic organization of the brain. Oxford University Press; 2003.
[111] Muldoon SF, Bassett DS. Network and multilayer network approaches to understanding human brain dynamics. Philos Sci 2016;83:710–20.
[112] Betzel RF, Bassett DS. Multi-scale brain networks. NeuroImage 2017;160:73–83.
[113] Zanin M. Can we neglect the multi-layer structure of functional networks? Physica A 2015;430:184.
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