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In times of plenty expectations rise, just as in times of crisis they fall. This can be mathematically described
as a win-stay-lose-shift strategy with dynamic aspiration levels, where individuals aspire to be as wealthy as
their average neighbor. Here we investigate this model in the realm of evolutionary social dilemmas on the
square lattice and scale-free networks. By using the master equation and Monte Carlo simulations, we find that
cooperators coexist with defectors in the whole phase diagram, even at high temptations to defect. We study
the microscopic mechanism that is responsible for the striking persistence of cooperative behavior and find that
cooperation spreads through second-order neighbors, rather than by means of network reciprocity that dominates
in imitation-based models. For the square lattice the master equation can be solved analytically in the large
temperature limit of the Fermi function, while for other cases the resulting differential equations must be solved
numerically. Either way, we find good qualitative agreement with the Monte Carlo simulation results. Our analysis
also reveals that the evolutionary outcomes are to a large degree independent of the network topology, including
the number of neighbors that are considered for payoff determination on lattices, which further corroborates
the local character of the microscopic dynamics. Unlike large-scale spatial patterns that typically emerge due
to network reciprocity, here local checkerboard-like patterns remain virtually unaffected by differences in the
macroscopic properties of the interaction network.
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I. INTRODUCTION

Cooperation has been theoretically studied in evolutionary
game theory [1–5]. The prisoner’s dilemma game [5,6] is
classically used to portray the situation where it is beneficial for
all members of a group to cooperate, but, whatever the others
do, it is always more beneficial for the individual to defect.
Due to its broad interpretation, prisoner’s dilemma inspired
research in social and natural sciences alike [7–23]. In the
prisoner’s dilemma game, two players can either cooperate (C)
or defect (D). Mutual cooperation yields a payoff R (reward)
and mutual defection yields P (punishment). If players have
different strategies, the defector receives T (temptation) and
the cooperator receives a small payoff S (sucker). Usually
prisoner’s dilemma follows the hierarchy T > R > P > S

[5,24,25]. In classical game theory, defection is the Nash
equilibrium and, therefore, the rational choice. Even so,
cooperation flourishes in human societies between members of
the same species and in some interspecies symbiosis [26–28].

In an original approach to evolutionary game theory, Nowak
studied spatially distributed populations where players copy
the fittest strategy. This model showed how cooperation can
exist in a sea of defectors, the so called “spatial reciprocity”
mechanism—cooperators spontaneously form clusters where
they support each other. After this, new mechanisms of
cooperation promotion were investigated, usually based on
some kind of reciprocity. Among the most studied mecha-
nisms are kin selection [29], direct and indirect reciprocity
[30,31], network reciprocity [32–34], group selection [35],
and heterogeneity [25,36,37]. The most common interpretation
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of these models are in terms of biological evolution, using
birth-death-like dynamics to model the replication of strategies
[1,38–40]: Players with higher payoff grow in population,
like the selection of the fittest [1,5,24]. Dynamics where
players only copy strategies previously available in the system
are called noninnovative dynamics. On the other side, in
innovative dynamics new strategies can arise, for example, via
mutation, exploration, testing, etc. [5,24,41,42]. While non-
innovative dynamics usually describe long-term evolutions,
usually innovative dynamics represent situations where players
can take cognitive responses to the environment, like human
interactions [24,43–45].

Recent works support the idea that human interactions are
strongly influenced by cognitive choices other than just copy
mechanisms [43–47]. New behavior can emerge and people
often change their opinions without the need of a “copy
source.” In contrast to simpler species, where the evolution
of strategies is basically governed by birth-death processes, in
the human species strategies spread via other mechanisms as
well [24,39,48,49]. For example, recent experimental results
show that individuals decided the strategy in the next round
in moody way [50], that is, individuals will cooperate in the
next round if they have cooperated in the previous round,
otherwise defection will follow. Also, experimental evidence
shows that individual decisions are guided by aspiration levels
[46]. So it is typical of human behavior to adopt innovative
dynamics. Note that, in game theory, all possible strategies are
already defined in the strategy space; hence, innovation refers
to the possibility of a new strategy emerge in a monomorphic
population. With this as motivation, we explore innovative
dynamics in the context of evolutionary game theory.

The win-stay-lose-shift strategy (WSLS; also know as
Pavlov) is an innovative strategy that relies on cognitive
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capabilities, instead of replicating process [8,43,45,51,52].
WSLS was proposed in the famous Axelrod tournaments
[5,6] and proved to be very efficient against others strategies
in the iterated prisoner’s dilemma in infinite, well-mixed
populations. It performed similarly to the famous tit-for-tat
and fare even better in noise environments [8]. A WSLS
player keeps its strategy if its payoff is above a desired
level—the individual aspiration—and changes when it is
bellow the aspiration. After the initial success in Axelrod
tournament, many different WSLS-like strategies have been
proposed [47,53–58]. Nevertheless, the aspiration level is
usually implemented as a global external parameter and
the decision-making process is deterministic: players always
change strategy if payoff is bellow the aspiration level.

Inspired by recent works that interpret aspiration as
dynamic, or coevolving parameter [25,58–66], we propose
a model where an individual aspiration is dynamically de-
termined by the average payoff of its neighbors. In this
way there is a variety of different aspirations that evolve
spatial and temporally in the population. Specifically, this
model relates to the rationale that aspiration levels tend to
follow the wealth level of one’s society. In the middle of
a crisis, humans tend to lower what they expect to receive
in interactions. On the other side, it is normal to want a
higher payoff when all your peers are faring better than
you. We note that previous works on WSLS spatial games
usually considered populations where WSLS is one strategy,
among others, that can be transmitted via copying mechanisms
[24,42,67]. Here we consider a population where only two
strategies are available—cooperation and defection—and the
update rule is defined as a win-stay-lose-shift behaviors: if
my payoff is bellow the average payoff of my neighbors then I
change my strategy, otherwise I keep my current strategy. Since
new strategies can emerge in monomorphic populations, this
dynamics is innovative.

Our main objective here is to analyze the proposed model,
comparing it to the classic version of non-innovative dynamics,
highlighting what differences can arise. In the next section we
define our model precisely. We also define the imitation rule,
a noninnovative dynamics that is well studied in the literature,
that will serve as a baseline for comparison. In Results, we
study the master equation and its implications for the WSLS
model, as well as the Monte-Carlo numerical simulations
in square and scale-free networks. We considered the most
studied two-players dilemma games—prisoner’s dilemma,
snow-drift and stag-hunt games. Finally, we summarize our
results in the Conclusion section.

II. MATHEMATICAL MODEL

Players have only two possible strategies: cooperation (C)
and defection (D). Individuals are represented by the nodes
of a network and the game happens on pairwise interactions
between players and their neighbors. In each interaction,
players receive a payoff according to the usual payoff matrix
[5,24]:

(C D

C 1 S

D T 0

)
,

where T ∈ [0,2] and S ∈ [−1,1]. Note that the parametrization
G = (T ,S) spans four different classes of games: prisoner’s
dilemma (PD), snow-drift (SD), stag-hunt (SH), and harmony
games (HG) [5,24,25].

The evolution of strategies is defined in two phases. First,
players interact with their neighbors and accumulate the payoff
obtained in each interaction. Second, players may change their
strategy according to an update rule. We study in this work the
win-stay-lose-shift with dynamic aspiration update rule and
compare it to the classic imitation update rule.

A. WSLS with dynamic aspiration

In this update rule individuals change their strategies
depending on the degree of satisfaction with their current
payoff in comparison to the average payoff of their neighbors.
The WSLS strategy is usually defined in terms of fixed
aspiration level as an external parameter [47,53–57]. Recently,
papers started using heterogeneous and time-evolving aspi-
ration levels [25,58–66]. Our model merges a probabilistic
decision-making process with the concept of aspiration as
the average payoff of the neighbors. In accordance with
other coevolutionary models [25,59–61,64,65], we intend to
make the aspiration an emerging property, intrinsic to the
system. At every time step, a player is randomly selected
to update its strategy. A player, i, changes its strategy—a
cooperator changes to defection and a defector changes to
cooperation—with probability

p(�ui) = 1

1 + e−(ū−ui )/k
, (1)

where ū is the average payoff of player i’s neighbors.
This probability distribution, which is based on the Fermi-
Dirac distribution of statistical physics, is widely used in
evolutionary dynamics [68]. The parameter k measures how
often players make “irrational” choices, changing strategies
against the rationality prescribed by the model [24]. In the
literature, usually we find k ∈ [0.001,0.3] to simulate a small,
but nonzero, chance of a player making mistakes (trembling
hand) [5,24].

The WSLS update rule has several distinct features. First,
the aspiration value is not an external parameter; it is an
emerging property of the system. Second, each site has its own
aspiration value. Third, the aspiration is subject to temporal
and spatial variations. It seems natural to determine the
aspiration in terms of the neighborhood average, as people
tend to lower their expectations during some global crises,
while they raise the expectations when neighbors are faring
better.

It is important to stress that we still have only two different
strategies in the population C or D. Differently from usual
works [69], here WSLS is not considered a “pure” strategy,
rather it is an update mechanism.

B. Imitation update rule

As a baseline for comparison, we are going to contrast our
model to the imitation update rule. In this rule, player i update
its strategy by randomly choosing one of its neighbors, j , and
then comparing their payoffs. Site i adopts the strategy of j
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with probability

p(�uij ) = 1

1 + e−(uj −ui )/k
, (2)

where ui is the cumulative payoff of site i.
The imitation rule is a noninnovative dynamic [5,24],

because a player can only change its strategy to the available
ones in the population. This means that new strategies can
never appear once extinguished (the system has absorbing
states) and, most importantly, players never “explore” new
strategies [5,24,42]. This update rule is thus associated with the
replication dynamics [1,5,24,40] found in biological systems.
The process of imitation is equivalent to local competition
where death is a random, uniform process, and reproduction
rates are determined by the payoffs (fitness). In this context,
without mutation, extinct species never reappear.

III. RESULTS AND DISCUSSION

It is well known that there is a phase transition in the fraction
of cooperation in square lattices with the imitation update rule:
cooperation cannot survive for certain payoff parameters. In
the weak prisoner’s dilemma [5,24], P = S = 0, cooperation
goes to extinction above a critical value of T . In contrast, we
found that in the WSLS with dynamic aspiration cooperation
always survives, even for large T . To understand this result,
first we are going to study the master equation for the weak
prisoner’s dilemma in square lattices. We obtained analytical
results for the limits of large T and k → ∞ and numerical
results for general T and k. After this initial analysis, we
are going to simulate the evolution of strategies in the entire
parameter space, as well as in scale-free topologies.

A. Master equation

On a square lattice, each player interacts with its four
nearest neighbors. A focal site, f , can be in two states:
cooperation or defection. In a mean-field approximation we
set the probability that the focal site is a cooperator equal to
the population fraction of cooperators, ρ. Therefore,

ρ̇ = (1 − ρ)�+(D→C) − ρ�−(C→D), (3)

where �+ (�−) is the transition rate accounting the probability
that the focal player will change its strategy to C (D), given that
its current strategy is D (C). We first use the simpler version
of the master equation, the well-mixed approach. Here we
consider that every player is connected to every other player.
By doing so there is no spatial structure and we can consider
the average payoff of a single cooperator, uc (defector, ud ),
as the average payoff of all cooperators (defectors) in the
population. Moreover, the average aspiration simply becomes
the population average payoff (ū). The ODE to be numerically
solved uses the transition rates:

�+ = 1

1 + e−(ū−ud )/k
, (4)

�− = 1

1 + e−(ū−uc)/k
. (5)
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FIG. 1. Equilibrium cooperation level in dependence on T in
the WSLS model, as obtained with Monte Carlo simulations and
the integration of the master equation (see legend). “Monte Carlo
whole lattice” refers to the aspiration being equal to the average
payoff of the whole lattice rather than just the nearest neighbors,
thus representing results for the two limiting cases concerning the
interaction range of individual players. There are small quantitative
differences between the presented curves. But more importantly, we
see that the inflection point of the curves and the minimum level of
cooperation are both very similar in all cases, thus pointing to a good
qualitative agreement and a deeper mechanism promoting this effect.

Assuming the weak prisoner’s dilemma, R = 1 and S =
P = 0, this gives us

ud = ρ2R + (1 − ρ)2P + ρ(1 − ρ)(T + S)

= ρ2 + ρ(1 − ρ)T , (6)

uc = ρR + (1 − ρ)S = ρR, (7)

ū = ρT + (1 − ρ)P = ρT , (8)

and finally the ODE,

dρ

dt
= 1 − ρ

1 + e−[ρ2(1−T )]/k
− ρ

1 + e−[ρ(ρ−1)(1−T )]/k
. (9)

This first approximation relates to the case where there is
no spatial structure, and therefore sites cannot rely on spatial
correlation effects. The results for this model are shown in
Fig. 1, together with the results for other studied cases. The
next step if one wishes to account for spatial effects is to
consider the nearest-neighbor approximation [24,38,70]. Here
we use a focal site i and define its chance of turning into
a cooperator or defector. We do so by calculating exactly its
payoff with the first four nearest neighbors of the square lattice.
To calculate the transition rates, we consider all combinations
of cooperators and defectors in the neighborhood of the focal
site. The transition rates in the first neighbor approximation
then become

�± =
4∑

n=0

(
4

n

)
ρn(1 − ρ)(4−n)P±(uf ,ū), (10)

where n is the number of cooperative neighbors for each con-
figuration. The term

(4
n

)
is the binomial coefficient accounting

different combinations of n cooperators and 4 − n defectors in
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a given configuration (for example, the configuration CDDD
can repeat itself in four different ways, while CCCC happens
only once). The term ρn(1 − ρ)4−n weighs the probability of
such a configuration, with n cooperators, to happen. Finally,
P±(uf ,ū) is the probability, in a given specific configuration,
that the focal site will turn into a cooperator (P+) or a
defector (P−). This probability is the only term that is directly
dependent on the update rule chosen (Imitation or WSLS).
Note that uf and ū depend on the configuration. Since the
solution for the master equation of the imitation model can be
found in the literature [5,24], here we focus on the solution of
the WSLS model.

The focal site compares its payoff, uf , with the average
payoff of the four neighbors. In a configuration where there
are n cooperators, the focal payoff is uf = nT . To calculate
ū, we have to estimate the payoff of each neighbor first. Let
us assume that the probability that a second neighbor of the
focal is a cooperator is also equal to ρ. Given that the focal is
a defector, a cooperative neighbor receives 0 in the interaction
with the focal and receives 3ρ on average in the interaction with
the second neighbors. In the same way, a defective neighbor
receives 3Tρ on average. Thus, the average payoff of the
neighbors, ū, in any configuration with n cooperators is

ū� = 1
4 [n3ρ + (4 − n)3Tρ] = 3

4 (nρ + 4Tρ − nTρ). (11)

Thus,

P+ = 1

1 + e−[T (12ρ−3nρ−4n)+3nρ]/4k
, (12)

and

P− = 1

1 + e[T (3nρ+n−4−12ρ)−3nρ+3n]/4k
. (13)

The equilibria of the master equation can be found analytically
in the limit k → 0, where players are assumed fully rational.
In this limit, the fermi probabilities become

P± =
⎧⎨
⎩

1 if ū − uf > 0,

1/2 if ū − uf = 0,

0 if ū − uf < 0,

(14)

and the transition rates will be just polynomial functions.
In the limit of large T , the difference ū − uf can be
explicitly evaluated for each neighborhood configuration of
n cooperators. Solving these polynomials we found that

P− =
{

1 if n < 3,

0 if n = 0 and ρ �= 1.
(15)

and

P+ =
⎧⎨
⎩

1 if n = 0,

0 if n = 1 and ρ < 4/9,

0 if n > 1,
(16)

Simplifying the master equation, Eq. (3), in the limit for k → 0
and large T, we get

ρ̇ = (1 − ρ)5 − ρ(1 − ρ)[(1 − ρ)3 + 4ρ(1 − ρ)2

+ 6ρ2(1 − ρ) + 3ρ]. (17)

This equation has a stable fixed point at ρ∗ ≈ 0.209, which
means that cooperation can coexist with defectors even for
high temptation values. This is an interesting result in terms

of cooperation survival and it goes along with different
approaches on innovative dynamics [21,42,71]. Note that, in
Eq. (16), P+ = 0 for n = 1 only if ρ < 4/9. Since ρ∗ < 4/9,
the analysis is consistent.

We proceed with the numerical integration of the original
master equation with arbitrary parameters (any T value), using
the fourth-order Runge-Kutta method. Figure 1 summarizes
the results for both analytical equations (well-mixed popula-
tion and nearest neighbors of the square lattice). For compar-
ison, we also show the results of Monte Carlo simulations,
which will be discussed more thoroughly in the next section.
We note that in Fig. 1 “Monte Carlo whole lattice” refers to the
aspiration of each site being equal to the average payoff of the
whole lattice. It can be observed that the interaction topology
slightly changes the results in both analytical and numerical
models quantitatively, but not the main characteristics of the
WSLS update rule. We also ran Monte Carlo simulations for
different aspiration level ranges, varying it from just the four
nearest neighbors to the whole lattice in a continuous fashion,
and the results all fell between the two depicted limiting cases
(the four nearest neighbors and the whole lattice) in Fig. 1.
Looking at the results, we can observe that the WSLS update
rule yields specific but generally valid results. Namely, there is
always a minimum level of cooperation in the population even
for large T values, and a smoother decline in cooperation as
T increases when compared to the relatively steep and sudden
transitions observed previously in imitation models (see also
Fig. 3). These results are thus intrinsically different from those
obtained with imitative dynamics, even in the well-mixed case
and regardless of the interaction range for the determination of
payoffs and aspirations. We argue that this is due to the intrinsic
micromechanism present in innovative dynamics, which is of
course not present in the imitation model. We will further
explore these mechanisms in the next section with an analysis
of the corresponding spatial patterns. Last, concerning the
results presented in Fig. 1, we also point out that the Monte
Carlo simulations and the numerical solutions of the master
equation agree very well qualitatively.

Figure 2 shows that the system reaches a stable state
independently of the initial fraction of cooperation. This is
a very important feature of the proposed model, since it is well
know that not every update rule will have an equilibrium state
that is independent of the initial conditions [42,72–74].

The mean-field technique is a good approximation to obtain
insights and confirm predictions. However, it often does not
return the same results of the simulation in the structured
population, some times not even qualitatively [24,75]. In
our case, it is interesting to notice that the mean-field
approximation correctly predicts the existence of the minimum
cooperation level.

B. Monte Carlo simulations

We use the asynchronous Monte Carlo procedure to
simulate the dynamics. A random player, i, is selected and
the cumulative playoff of i, as well as the payoff of the
first and second neighbors of i, are calculated. Then player i

decides to change its strategy based on the update probability
1 for WSLS or 2 for imitation dynamics. One Monte Carlo
step (MCS) consists of this process being repeated until each
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FIG. 2. Time evolution of the average cooperation level in the
mean-field approximation. The graph shows two sets of curves, each
obtained with different initial conditions. The system always reaches
a stable state, independent of the initial condition for each value of T .

player has the chance to change its strategy. We used k = 0.1
in all simulations. For a detailed discussion on Monte Carlo
methods in evolutionary dynamics see Refs. [24,76–78]. In
our simulations we ran the algorithm until the system reaches
an equilibrium state (104–105 iterations) [24,79]. Then we
take the averages over 1000 Monte Carlo Steps (MCS) for
10–20 different initial conditions. We use 104 individuals
distributed in a square lattice, unless stated otherwise. The
square lattice have periodic boundary conditions and we start
with homogeneous strategy distribution (we note that for our
model the initial distribution did not change the final outcome).

We start by comparing the WSLS model to the usual
imitation model for the weak prisoner’s dilemma (S = 0).
Figure 3 shows the fraction of cooperation in the equilibrium,
ρ, as a function of the parameter T . In contrast to the imitation

0 0.5 1 1.5
T 

0

0.2

0.4

0.6

0.8

1

ρ

Imitation
WSLS

FIG. 3. Fraction of cooperator as a function of T , as obtained
with Monte Carlo simulations. We used the weak prisoner’s dilemma
with S = 0 and k = 0.1. The behavior of WSLS is different from the
imitation dynamics, especially above T = 1, where here we have a
nonzero cooperation level. Note also how the WSLS has a smooth
drop in T � 0.6.

ρ
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FIG. 4. Phase diagram depicting the fraction of cooperators (color
bar), depending on S and T for the two different models (WSLS and
imitation). In the imitation model (top), as expected, there is full
cooperation in the harmony game quadrant, some coexistence in the
SD quadrant, a sharp division in the SH quadrant, while most of the
PD quadrant is dominated by defection, with cooperators surviving
only near the weak PD regime, with Tc ≈ 1.04. For the WSLS model
(bottom) the cooperation is widespread everywhere, although lower
than for imitation in the HG quadrant. We can see that the model is
efficient in maintaining the coexistence of strategies even for high
values of T .

model, which exhibits a phase transition near Tc = 1.04
where cooperators are extinct [24,75], the WSLS model
has a smooth drop in cooperation levels, but cooperation
is not extinct, even for large T . This result agrees with
the predictions of coexistence of cooperation found in our
mean-field approximation. Also notice that cooperation is
smaller in the WSLS model for small values of T compared to
the imitation model. Recall that results for the imitation model
are only for the sake of comparison in this work, since other
papers study this model in depth (for a comprehensive review
see Ref. [24]).

Figure 4 shows cooperation level in the entire T-S plane
for the imitation and the WSLS model, with cooperation
represented by the color scale.

As expected, in the imitation model there is full cooperation
in the HG quadrant, a mixture of full cooperation and
coexistence in the SD quadrant, a sharp division of full
cooperation or full defection for the SH quadrant and only
defection for most of PD quadrant. The only coexistence in
PD game is for small S values (around S = −0.01) [75].
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FIG. 5. Typical snapshots from the imitation (top) and WSLS
(bottom) models, cooperators are dark blue and defector light red.
We can see different spatial organization patterns that spontaneously
emerge. We depict a typical PD game where ρ ≈ 0.25 and S = −0.01
for both models. The temptation level is imitation (T = 1.023) and
WSLS (T = 1.1).

In the WSLS model we see a totally different behavior.
Cooperation coexists with defectors in the entire phase
diagram. More specifically, cooperation is mostly enhanced in
the HG quadrant; there is a sharp division in the SH quadrant;
in the SD there is a smooth variation; and in the PD quadrant
cooperation has the lowest values. The interesting result is that
cooperation levels are nonzero for the whole phase diagram,
the lowest value around 0.2.

It is insightful to see one-frame snapshots of the square
lattices after the system reaches a dynamical equilibrium.
Figure 5 shows snapshots of the lattice for each model (both
imitation and WSLS have the same fraction of cooperation
and are playing the prisoner’s dilemma). Note that the spatial
organization of cooperators is totally different. While in
the imitation model, cooperators form islands to survive

FIG. 6. Cooperator (dark blue) surrounded by defectors (light
red) in the deterministic version of the WSLS model. Although
the focal site changes to defection, its second neighbors become
cooperators due to the lower payoff when compared to the first
neighbors.

(as expected) [24], in the WSLS model cooperators and defec-
tors are homogeneously distributed, forming a checkerboard-
like pattern. Similar patterns for innovative dynamics were also
found in Ref. [71]. Remarkably, the weak correlation present
in the WSLS is the cause of the success of our mean-field
approximation.

To understand the microscopic mechanisms underlying the
evolution of cooperation, we study the deterministic case,
obtained in the limit k → ∞ and, again, we set S = 0 for
simplicity. We stress that simulations in this limit yield the
similar results are for intermediate k values. The evolution of
cooperation in the WSLS model, in contrast to the imitation
model, must rely on a different microscopic mechanisms
to promote cooperation, as indicated by the distinct spatial
organizations of strategies. Since the statistical nature of the
Fermi-Dirac distribution does not allow us to obtain a simple
picture of the mechanisms, we will focus on the deterministic
case obtained in the limit k → ∞, where the site definitively
changes its strategy if ui < ū, or stays the same in the opposite
situation. We set S = 0, again, for simplicity.

Analyzing a cooperator surrounded by defectors, we see
that cooperation spreads to the second next neighbors, instead
of to its first neighbors, as can be seen in Fig. 6. Since the
payoff of central site C is lower than the average payoff of its
neighbors, the central site will change to a defector. But at the
same time all second neighbor defectors have a payoff (zero)
lower than the payoff (T ) of the first neighbors defectors,
which causes the second neighbors to turn to cooperation. The
basic mechanism is the greediness of defectors, surrounded by
other defectors. This makes them constantly change strategy if
there is at least one defector faring better. In other words,
the greediness of defectors leads to their downfall. This
micromechanisms also point to the curious phenomena that
cooperators do not stick together in this WSLS model.

Our results suggest that the effect of the WSLS mechanism
on cooperation is not directly related to network reciprocity,
where cooperators form clusters of cooperation that provide
mutual help [32–34,80]. This can be tested by varying the
network topology. We therefore investigate how the models
behave in scale-free networks [81,82], a well-studied case
of topology that enhances cooperation [83–85]. To have a
robust result, we study both the absolute payoff (the payoff
of a player is just the sum of payoffs obtained in each
interaction) and the normalized payoff (the absolute payoff
divided by the number of neighbors) [86,87]. The networks
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FIG. 7. Fraction of cooperation as a function of T in two different
topologies: square lattice and scale-free network with absolute and
normalized payoff. We see for the imitation model (top) that the scale-
free network with absolute payoff highly enhances cooperation, while
the normalized payoff dampens this boost to a substantial degree. The
lowest cooperation is obtained on the square lattice. For the WSLS
(bottom) the different topologies have little effect on the evolution of
cooperation.

are generated with the Krapivsky-Redner algorithm [36,88], a
type of growing network with redirection (GNR) method. We
used scale-free networks with 104 nodes, irrationality k = 0.1,
weak PD (S = 0), and average connectivity degree of 2.7.

In the imitation model, scale-free networks enhance coop-
eration when absolute payoffs are considered [86,87]. The
enhancement is dampened if normalized payoff is used,
but still scale-free topology favors cooperation more than
square lattices [9,24,75,81,83–85,87,89–91]. Figure 7 shows
the results for scale-free network and square lattice, comparing
both imitation and WSLS models. The effect of scale-free
topology in the promotion of cooperation is much weaker in
the WSLS model than in the imitation model.

The study of the WSLS model in scale-free networks
indicates that topology has a small effect in the evolution
of cooperation in the WSLS model, when compared to the
effect it has in the imitation model. It is an interesting
result, if we take into account that topology strongly affects

imitative dynamics [9,24,75,81,84,87,89–93]. The topology
independence strengthens the point that the mechanisms
promoting cooperation in the WSLS model relies on another
source, other than spatial reciprocity. Recent works found
that the system dependency on topology can be irrelevant for
some innovative update rules like best response, extortion, and
myopic [21,42].

Finally, our analysis reinforces the fact that network
reciprocity is dependent on the kind of strategy update rule
that is used, and not on the mere presence of network structure.
Indeed, the replicator equation is equivalent to the Monte Carlo
dynamics only when individuals change strategy by copying
each other [1,24,42], and this is not the case here. In the WSLS
model, strategies are not replicated in the sense that they are
transmitted from more successful individuals to less successful
ones. Instead, the success of neighbors only influences ones
decision on whether to keep or to change its own strategy.

IV. CONCLUSIONS

In this work we studied the win-stay-lose-shift mechanism
with local average aspiration in the evolutionary game frame-
work using the master equation and Monte Carlo analysis.
The basic idea is that players aspire to be at least as wealthy
as the average of their neighbors, changing strategy otherwise.
Cooperative behavior always face the challenge to survive
in a population of self-interest individuals, since defecting
against cooperators is more profitable. However, we found
that if the motivation of faring as good as the neighbors
is the base of individual behavior, cooperation will emerge
in coexistence with defection. This result was supported by
computer simulations in the entire range of payoff parameters
and was confirmed by mean-field approximations.

In imitation models, compact cooperative islands arise
around seeds of successful cooperators. At the border between
cooperators and defectors, the latter will do better and the
islands will spread, sometimes shrink, and in general move
across the network. In WSLS models, successful defectors will
cause an erosion of compact defector patches, since internal
defectors will change their strategies due the high success
of the defectors at the border. This drastically affects the
whole population, causing cooperators to be homogeneously
distributed in a checker-board like manner, instead of forming
islands. This also results in cooperators lingering even for high
values of temptation and, at the same time, defectors being
always present in the population, even for strongly cooperative
games like the harmony game.

The analytical predictions show a minimum cooperation
level above zero, even for high temptation. The stability was
reached independent of initial conditions, and we prove that
the ODE have a stable equilibrium point with ρ∗ > 0 for
large T . We tested the model using asynchronous Monte
Carlo dynamics in square and scale-free lattices. Using
numerical simulations for Monte Carlo we still found the
basal cooperation level and independence with the initial
state. Even more, cooperation is widespread through the entire
T − S diagram, differently from the classical non-innovative
dynamics where cooperation does not linger on the prisoners
dilemma for most values of T and S. We deeply analyzed
the microscopical mechanism that leads to the support of
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cooperation using deterministic dynamics. We found out that in
this innovative process, cooperation is transferred to the second
neighbors, instead of the first ones as in copy mechanisms. This
drastically affects the whole population, causing cooperators
to be homogeneously distributed, instead of forming islands.
This also results in cooperation lingering for high values of
temptation. At the same time defectors are always present,
even in strongly cooperative games like the harmony game.
We studied the model on scale-free networks and found that
the classical result of cooperation enhancement due to network
reciprocity remained absent, further supporting the claim that
innovative dynamics does not rely on such reciprocity to
maintain cooperation. This is interesting, also in the light
of recent research on the importance of the integration of
cognitive abilities in game theoretical models [94], and the
fact that human cooperation is likely more related to cognitive
strategies than to effects stemming from replicator dynamics.

Last, our work highlights the relevance of the proper choice
of the updating rule when modeling human behavior. While the

evolution of strategies in simpler animals over long timescales
can be described by the replicator dynamics, it is not always
the case when individuals have higher cognitive capacity and
can make choices very fast, in timescales that are much shorter
than the typical time to induce an evolutionary transition. We
note that our results support preceding research on innovative
dynamics, fast decision making, and intuitive cooperation
[95–98], highlighting also the importance of the different
updating rules. In this sense it becomes clear that one should
be very careful when choosing a model to describe a real-life
situation. We hope that this paper will motivate further research
along this line in the near future.
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