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Economic experiments have shown that punishment can increase public goods game contributions
over time. However, the effectiveness of punishment is challenged by second-order free-riding and
antisocial punishment. The latter implies that noncooperators punish cooperators, while the former implies
unwillingness to shoulder the cost of punishment. Here, we extend the theory of cooperation in the
spatial public goods game by considering four competing strategies, which are traditional cooperators
and defectors, as well as cooperators who punish defectors and defectors who punish cooperators. We show
that if the synergistic effects are high enough to sustain cooperation based on network reciprocity alone,
antisocial punishment does not deter public cooperation. Conversely, if synergistic effects are low and
punishment is actively needed to sustain cooperation, antisocial punishment does is viable, but only if the
cost-to-fine ratio is low. If the costs are relatively high, cooperation again dominates as a result of spatial
pattern formation. Counterintuitively, defectors who do not punish cooperators, and are thus effectively
second-order free-riding on antisocial punishment, form an active layer around punishing cooperators,
which protects them against defectors that punish cooperators. A stable three-strategy phase that is
sustained by the spontaneous emergence of cyclic dominance is also possible via the same route.
The microscopic mechanism behind the reported evolutionary outcomes can be explained by the
comparison of invasion rates that determine the stability of subsystem solutions. Our results reveal an
unlikely evolutionary escape from adverse effects of antisocial punishment, and they provide a rationale for
why second-order free-riding is not always an impediment to the evolutionary stability of punishment.
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I. INTRODUCTION

Cooperation is widespread in human societies [1–7].
Like no other species, we champion personal sacrifice for
the common good [8,9]. Not only are people willing to
incur costs to help unrelated others, economic experiments
have shown that many are also willing to incur costs to
punish those that do not cooperate [10–16]. Unfortunately,
cooperation is jeopardized by selfish incentives to free-ride
on the selfless contributions of others. What is more,
individuals that abstain from punishing such free-riders
are often called second-order free-riders for their failure to

bear the additional costs of punishment [17,18]. Several
evolutionary models have been developed to study the
effects of punishment on cooperation [19–27], and it has
been pointed out that second-order free-riding is among
the biggest impediments to the evolutionary stability of
punishment [28–31].
In addition to second-order free-riding, the effectiveness

of punishment is challenged by antisocial punishment. The
fact that noncooperators sometimes punish cooperators has
been observed experimentally in different human societies
[32–37], and it has been shown theoretically that this
antisocial punishment can prevent the successful coevolu-
tion of punishment and cooperation [38,39]. In fact, if
antisocial punishment is an option, prosocial punishment
may no longer increase cooperation, deteriorating instead
to a self-interested tool for protecting oneself against
potential competitors [40]. While the punishment of free-
riders is aimed at increasing cooperation, antisocial punish-
ment can be a form of retaliation for punishment received in
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repeated games [32,41], or is simply aimed at cooperators
without a retaliatory motive [36,37].
Given the potential drawbacks associated with punish-

ment related to second-order free-riding and antisocial
punishment, it has been rightfully pointed out that the
maintenance of cooperation may be better achievable
through less destructive means. In particular, rewards
may be as effective as punishment and lead to higher total
earnings without potential damage to reputation or fear
from retaliation [42,43]. Although many evolutionary
models confirm the effectiveness of positive incentives
for the promotion of cooperation [44–52], in this case too
the challenges associated with second-order free-riding and
antisocial rewarding persist [53,54].
Here, we use methods of statistical physics to show how

the two long-standing problems—namely, second-order
free-riding and antisocial punishment—cancel each other
out in an unlikely and counterintuitive evolutionary out-
come, and in doing so restore the effectiveness of prosocial
punishment to promote cooperation. We extend the theory
of cooperation by considering the spatial public goods
game with nonpunishing cooperators and defectors, as well
as with cooperators who punish defectors and defectors
who punish cooperators. As we show in detail, spatial
pattern formation leads to unconditional defectors forming
an active layer around punishing cooperators, which
protects them against defectors that punish cooperators.
This is a new evolutionary escape from adverse effects of
antisocial punishment, which in turn also reveals unex-
pected benefits stemming from second-order free-riding.
In what follows, we first present the spatial public goods

game with prosocial and antisocial punishment, and then
proceed with the results and a discussions of their impli-
cations for the successful coevolution of cooperation and
punishment.

II. PUBLIC GOODS GAME WITH PROSOCIAL
AND ANTISOCIAL PUNISHMENT

The traditional version of the public goods game is
simple and intuitive, and it captures the essence of the
puzzle that is human cooperation [55,56]. In a group of
players, each one can decide whether to cooperate (C) or
defect (D). Cooperators contribute a fixed amount (equal to
1 without loss of generality) to the common pool, while
defectors contribute nothing. The sum of all contributions
is multiplied by a multiplication factor r > 1, which takes
into account synergistic effects of cooperation, and the
resulting amount of public goods is divided equally among
all group members irrespective of their strategies. Defection
thus yields the highest short-term individual payoffs, while
cooperation is best for the group as a whole.
Here, we extend this game by introducing two additional

strategies, namely, cooperators that punish defectors (PC)
and defectors that punish cooperators (PD). The former
represent prosocial punishment, while the latter represent

antisocial punishment. Technically, PC players punish D
and PD players, while PD players punish C and PC players.
In a g group of size G the resulting payoffs are

Πg
D ¼ ΠPGG − β

NPC

G − 1
; ð1Þ

Πg
C ¼ ΠPGG − β

NPD

G − 1
− 1; ð2Þ

Πg
PD

¼ ΠPGG − β
NPC

G − 1
− γ

NC þ NPC

G − 1
; ð3Þ

Πg
PC

¼ ΠPGG − β
NPD

G − 1
− γ

ND þ NPD

G − 1
− 1; ð4Þ

where

Πg
PGG ¼ rðNC þ NPC

Þ
G

; ð5Þ

and NC, ND, NPC
, and NPD

are, respectively, the number
of nonpunishing cooperators, nonpunishing defectors,
punishing cooperators, and punishing defectors in the g
group. In addition to the multiplication factor r, we have
two additional parameters, which are β, as the maximal fine
imposed on a player if all other players within the group
punish her, and γ, as the maximal cost of punishment
that can apply. Importantly, the values of both β and γ are
kept the same for prosocial and antisocial punishment so
as to not give either a default evolutionary advantage or
disadvantage.
This public goods game is staged on a square lattice

with periodic boundary conditions where L2 players are
arranged into overlapping groups of size G ¼ 5 such that
everyone is connected to its G − 1 nearest neighbors.
Accordingly, each player belongs to g ¼ 1;…; G different
groups, each of size G. Notably, the square lattice is the
simplest of networks that takes into account the fact that the
interactions among us are inherently structured rather than
random. By using the square lattice, we continue a long-
standing tradition that began with the work of Nowak and
May [57], and which has since emerged as a default setup
to reveal all evolutionary outcomes that are feasible within
a particular version of the public goods game [56]. We
should note, however, that our observations are robust
and are not restricted to this interaction topology. The only
crucial criteria are that players should have limited and
stable connections with others, which allows network
reciprocity to work.
Monte Carlo simulations are carried out as follows.

Initially, each player on site x is designated as either a
nonpunishing cooperator, a nonpunishing defector, a
punishing cooperator, or a punishing defector with equal
probability. The following elementary steps are then
iterated repeatedly until a stationary solution is obtained,
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i.e., until the average fractions of strategies on the square
lattice become time independent. During an elementary
step a randomly selected player x plays the public goods
game in all the G groups where she is a member, whereby
her overall payoff Πsx is thus the sum of all the payoffs
Πg

sx acquired in each individual group, as described in
Eqs. (1)–(5). Next, a randomly selected neighbor of player
x acquires her payoff Πsy in the same way. Lastly, player y
imitates the strategy of player x with a probability given by
the Fermi function,

Γðsx → syÞ ¼ 1=f1þ exp½ðΠsy − ΠsxÞ=K�; ð6Þ

where K quantifies the uncertainty by strategy adoptions
[58], implying that better performing players are readily
adopted, although it is not impossible to adopt the strategy
of a player performing worse. In the K → 0 limit, player y
imitates the strategy of player x if and only if Πsx > Πsy .
Conversely, in the K → ∞ limit, payoffs cease to matter
and strategies change as per a flip of a coin. Between
these two extremes players with a higher payoff will be
readily imitated, although the strategy of underperforming
players may also be occasionally adopted, for example, due
to errors in decision making, imperfect information, and
external influences that may adversely affect the evaluation
of an opponent. Without loss of generality, we useK ¼ 0.5,
in agreement with previous research that showed this
to be a fully representative value [58–60]. Repeating all
described elementary steps L2 times constitutes one full
Monte Carlo step (MCS), thus giving a chance to every
player to change their strategy once on average.
We note that imitation is a fundamental process by

means of which humans change their strategies [61–64].
The application of imitation-based strategy updating based
on the Fermi function is thus appropriate and justified,
although, as we show, our results are robust to changes in
the details that determine the microscopic dynamics of the
studied public goods game. In terms of the application of
the square lattice, we emphasize that, despite its simplicity,
it fully captures the most relevant aspect of human
interactions—namely, the fact that nobody interacts ran-
domly with everybody else, not even in small groups, and
that our interaction range is thus inherently limited.
Applications of more complex interaction topologies are
of course possible, but this does not affect our results. This
is because our key argument is based on the limited number
of interactions a players has, but it does not in any way rely
on the specific properties of the square lattice topology.
The average fractions of all four strategies on the

square lattice are determined in the stationary state after
a sufficiently long relaxation time. Depending on the
proximity to phase transition points and the typical size
of emerging spatial patterns, the linear system size is varied
from L ¼ 400 to 6000, and the relaxation time is varied
from 104 to 106 MCS to ensure that the statistical error is

comparable with the size of the symbols in the figures.
We emphasize that the usage of a sufficiently large system
size is a decisive factor that allows us to identify the correct
evolutionary stable solutions. Using a too small system size
may easily prevent this, for example, if the linear size of the
lattice is comparable to or smaller than the typical size of
the emerging spatial patterns.

III. RESULTS

Before presenting the main results, we briefly summarize
the evolutionary outcomes in a well-mixed population.
In the absence of a limited interaction range, the behavior
is largely trivial and resembles that reported before for
the traditional two-strategy public goods game [29,55].
In particular, if r exceeds the group size G, then both
cooperative strategies dominate while all defectors die out.
Conversely, below this threshold both defector strategies
dominate while all cooperators die out. This behavior is
also in agreement with the well-mixed results published in
Ref. [39]. In short, all the nontrivial evolutionary solutions
we report here in the continuation are due to the consid-
eration of a structured population and remain completely
hidden if a well-mixed population is assumed.
In what follows, we focus on two representative values of

the multiplication factor that cover two relevantly different
public goods game scenarios. First, we use r ¼ 3.8, where
the spatial selection allows cooperators to survive even in
the absence of punishment—this is the well-known mani-
festation of network reciprocity, where the limited inter-
actions among players allow cooperators to organize
themselves into compact clusters, which confers them
competitive payoffs in comparison to defectors [65].
Subsequently, we also use a sufficiently small, r ¼ 3.0,
value, where cooperators can no longer survive solely due
to network reciprocity and thus require additional support
[58]. For both values of r we determine the stationary
fractions of strategies dependent on the punishment fine β
and the punishment cost γ, and we pinpoint the location
and type of phase transitions from the Monte Carlo
simulation data.
In Fig. 1, we show the full β-γ phase diagram, as

obtained for r ¼ 3.8. As discussed above, we refer to
this as the strong network reciprocity region. Presented
results reveal that antisocial punishment is hardly viable,
with PD players surviving only in a tiny region of the
β-γ parameter space. Conversely, as the fine β increases,
punishing cooperators subvert nonpunishing cooperators,
first via a discontinuous phase transition from the two-
strategy Dþ C phase to the two-strategy Dþ PC phase,
and subsequently via a continuous phase transition to the
absorbing PC phase. The discontinuous phase transition is
due to indirect territorial competition, which emerges
between C and PC players competing against defectors
[29], while the continuous phase transition is due to an
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increasing effectiveness of punishment that stems from the
larger fines.
The two representative cross sections of the phase

diagram in Fig. 2 provide a more quantitative insight into
the nature of these phase transitions. In both cases the
application of small punishment fines yields a punishment-
free state, where traditional cooperators and defectors
coexist due to network reciprocity. If the cost of punish-
ment is considerable, as in Fig. 2(a), the Dþ C phase
suddenly gives way to the Dþ PC phase at a critical value
of the punishment fine βc ¼ 0.229, and by increasing β
further, a defector-free state is reached at βc ¼ 0.361. This
succession of phase transitions remains the same if the cost
of punishment is tiny, shown in Fig. 2(b), apart from a
narrow intermediate region of β, where antisocial punish-
ment replaces nonpunishing defectors via a discontinuous
Dþ PC → PD þ PC phase transition at βc ¼ 0.284.
Interestingly, this phase transition is qualitatively identical
to the preceding Dþ C → Dþ PC phase transition—in
both cases nonpunishing strategies are subverted by their
punishing counterparts on the grounds of increasing pun-
ishment fines. It can also be observed that the emergence
of a stable PD þ PC phase involves a slight decay of the
fraction of PC players, although they quickly recover to full
dominance as the punishment fine is increased further.
To sum up, in the strong network reciprocity region,

antisocial punishment has a negligible impact on the
evolution of cooperation. In a small region of the β-γ
parameter space, antisocial punishers can outperform
nonpunishing defectors to form a stable coexistence with
prosocial punishers. But apart from this, and despite the
fact that both forms of punishment are implemented equally
effectively (the values of both β and γ are kept the same for
prosocial and antisocial punishment), antisocial punish-
ment fails and is evolutionary unsuccessful.

An exciting question now is what if the network
reciprocity alone is not strong enough to support the
coexistence of cooperators and defectors? Although pre-
vious research has shown that prosocial punishment can
be effective if the imposed fines are sufficiently high
[66,67], this result was obtained in the absence of antisocial
punishment. However, if cooperators can also be punished,
the situation changes significantly. A subsystem analysis of
the public goods game entailing only punishing coopera-
tors and punishing defectors actually reveals that at r ¼ 3.0
cooperation is unable to survive regardless of the values of
β and γ, and regardless of the fact that punishing cooper-
ators also benefit from network reciprocity.
Quite remarkably, the evolutionary outcome of the full

four-strategy public goods game can be very different. The
full β-γ phase diagram presented in Fig. 3 reveals that
punishing cooperators can actually dominate completely in
a sizable region of the parameter plane. Of course, if the
cost of punishment is too high in relation to the imposed
fines, defectors dominate. More precisely,C and PC players
die out fast, with only D and PD players remaining. In the
absence of the two cooperative strategies, the relation
between D and PD players is neutral, since the latter do
not need to bear the punishment cost. This yields a
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FIG. 2. Two representative cross sections of the phase diagram
depicted in Fig. 1, as obtained for the punishment cost γ ¼ 0.4 (a)
and γ ¼ 0.02 (b). Depicted are stationary fractions of the four
competing strategies dependent on the punishment fine β.
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FIG. 1. Full β-γ phase diagram of the spatial public goods game
with prosocial and antisocial punishment, as obtained for r ¼ 3.8.
Solid lines denote continuous phase transitions, while dashed
lines denote discontinuous phase transitions. Two representative
cross sections of this phase diagram are presented in Fig. 2.
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logarithmically slow coarsening without surface tension, as
in the voter model [68,69]. In this case, the probability to
reach either the absorbing D or the absorbing PD phase
depends on the fraction of these two strategies [70] when all
cooperators die out, which is typically higher for D, and
hence the DðPDÞ notation in Fig. 3.
Returning to the absorbing PC phase, since network

reciprocity at r ¼ 3.0 is weak, an additional mechanism
must be at work that allows the dominance of cooperation
despite the low multiplication factor and despite antisocial
punishment. This mechanism is illustrated in Fig. 4, where
we show a representative spatial evolution of the four
competing strategies from a random initial state for
parameter values that yield the absorbing PC phase. It is
important to emphasize that a sufficiently large square
lattice must be used, since otherwise the evolutionary
process can quickly lead to a misleading outcome, i.e.,
to a solution that is not stable in the large population size
limit, or to a solution that is highly sensitive on the initial
fraction of strategies, as reported in Ref. [39]. This is,
however, just a finite-size effect because the evolutionary
stable solution can spread in the whole population if it
has a chance to emerge somewhere locally. Because of the
random initial state the number of nonpunishing and
punishing cooperators starts dropping fast because support
from network reciprocity is lacking, both because the value
of r is low and even more so because compact clusters are
not yet formed so early in the process. During this stage,
if the population would be small, an accidental extinction
of PC players would be very likely. Indeed, even with
L ¼ 800 they manage to just barely survive, as indicated in
Fig. 4(c) by a white circle. At this point the temporary
winners appear to be D and PD players, which in the

absence of cooperators are neutral, and hence perform a
logarithmically slow coarsening [69].
However, the unlikely evolutionary twist is yet to come

and reveals itself in Figs. 4(d)–4(f). Since PC players are
weaker than PD players, the only chance for the former to
survive is if they form a compact cluster inside a D domain
(C cannot survive either way because r ¼ 3.0 is too small).
Although one might suspect that this “hanging by a thread”
type of survival of PC players is merely temporary because
the superior PD players will eventually invade their cluster,
this does in fact never happen. On the contrary, punishing
cooperators eventually rise to complete dominance (the
final state is not shown in Fig. 4).
Crucial for the understanding of this counterintuitive

evolutionary outcome is the realization that punishing
defectors suffer from second-order free-riding of nonpun-
ishing defectors as soon as they both meet in the vicinity of
punishing cooperators. More precisely, when D players
meet with PD players in the vicinity of PC players, PD
players have to bear the additional cost of punishment
while D players are, of course, free from this burden.
The same argument is traditionally put forward when it is
time to explain why punishing cooperators are uncompe-
titive next to nonpunishing cooperators near defectors, and
why, in fact, punishment is evolutionary unstable. When
antisocial punishment is present, however, this very same
reasoning helps punishing cooperators to beat defectors
that punish them. As a result, D players start invading PD
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FIG. 3. Full β-γ phase diagram of the spatial public goods game
with prosocial and antisocial punishment, as obtained for r ¼ 3.0.
Solid lines denote continuous phase transitions, while dashed
lines denote discontinuous phase transitions. Representative
spatial evolutions of the four competing strategies are presented
in Figs. 4–6, while two representative cross sections of this phase
diagram are presented in Fig. 7.

FIG. 4. Representative spatial evolution of the four competing
strategies. Depicted are snapshots of the square lattice, as
obtained for β ¼ 0.8, γ ¼ 0.36, and r ¼ 3. Nonpunishing (pun-
ishing) cooperators are depicted in light blue (dark blue), while
nonpunishing (punishing) defectors are depicted in light red (dark
red). From a random initial state (a) both cooperative strategies
start vanishing quickly (b). The only chance for cooperation to
survive is if a lucky PC seed starts growing in the sea of D
players, as indicated in (c) by a white circle. It turns out, however,
that PC players, surrounded by a thin active layer of D players,
can rise to complete dominance over time, as shown in (d)–(f)
(the final state, where only PC remain after 6000 MCS, is not
shown). The linear size of the lattice is L ¼ 800.
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domains, but in parallel, PC players also invade D players
from the other side of the interface. The thin active layer
of D players thus acts as a protection, shielding PC
players from a direct invasion of PD. As can be seen in
Figs. 5(d)–5(f), the shield is not passive, but expands
permanently because D players become successful when
meeting PD players close to cooperators. (This process is
quantified via an effective invasion rate in the following
section.) At the end, when PD players die out, the D shield
falls victim to the invasion of PC players, which thus rise to
complete dominance. A direct illustration of this mecha-
nism is shown in Fig. 5, where a prepared initial state is
used for clarity. The comparison of the evolution of a large
but lonely PC domain and a tiny but D-protected seed of

the same strategy illustrates nicely that the previously
described “activated layer” mechanism is effective to
overcome the danger of the simultaneous presence of
antisocial punishment.
We show the above-described pattern formation in the

animation provided in Ref. [71]. At this point, we also
emphasize that the key mechanism that is responsible for
the recovery of prosocial punishment is not restricted to
the application of imitation-based strategy updating and
is in fact robust to changes in the microscopic dynamics.
For example, if we apply the so-called “score-dependent
viability” strategy updating [39,72], the trajectory of
evolution remains the same [73]. The only visible differ-
ence is that, in the latter case, the interfaces that separate the
competing domains are rugged and strongly fluctuating,
which in turn decelerates the evolutionary dynamics and
prolongs the time needed to arrive at the same final
outcome.
As we point out, snapshots in Fig. 4 illustrate clearly that

the size of the lattice plays a decisive role in reaching the
correct evolutionary outcome from a random initial state.
For some parameter values that bring the population closer
to a phase transition point or because of the large fluctua-
tions of strategy abundance during the pattern formation,
even L ¼ 6000 (linear system size) can turn out to be too
small. In such cases a prepared initial state, as depicted in
Fig. 6(a), consisting of sizable patches of the four com-
peting strategies, can help to determine the correct com-
position of the stationary solution. We use this approach to
determine the stability of the three-strategy Dþ PD þ PC
phase, which according to the phase diagram in Fig. 3 also
forms an important part of the solution. Figure 6 illustrates
that such a solution can be observed even if using a very
small lattice size, if only suitable initial conditions are used.
The alternating oscillations of red and blue indicate that this
three-strategy phase is sustained by cyclic dominance.
Indeed, due to using a different set of β and γ values from
those used in Fig. 4, here PD players beat PC players
because of the low value of r, PC players beat D players
because of prosocial punishment, and D players beat PD
players near cooperators because of second-order free-
riding. However, the balance of these invasions is such that

FIG. 5. An illustration of how second-order free-riding on
antisocial punishment restores the effectiveness of prosocial
punishment. A small domain of PC players (dark blue), sur-
rounded by a thin layer of D players (light red), is inserted into
the sea of PD players (dark red) in the bottom left corner of the
lattice (a). Similarly, a sizable domain of PC players, but without
the protectiveD layer, is inserted into the sea of PD players in the
upper right-hand corner of the lattice (a). While the large PC
domain without the protective layer shrinks over time, the small
PC domain with the protective D layer grows (b)–(f). The
absorbing PC phase is reached after 2000 MCS (not shown).
The linear size of the square lattice in this case is L ¼ 200. Other
parameters are β ¼ 0.8, γ ¼ 0.3, and r ¼ 3.

(a) (b) c d e f(c) (d) (e) (f)

FIG. 6. Representative spatial evolution of the four competing strategies from a prepared initial state towards the three-strategy
Dþ PD þ PC phase that is sustained by cyclic dominance. Note that blue and red colors dominate cyclically over the course of 16 000
MCS from left to right. The colors used are the same as in Figs. 4 and 5. Depicted are snapshots of the square lattice, as obtained for
β ¼ 0.52, γ ¼ 0.065, and r ¼ 3. Since a prepared initial state is used, a small square lattice with linear size L ¼ 100 can be used for
demonstration.
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neither strategy dies out, and hence the three-strategy
Dþ PD þ PC phase is stable.
The two representative cross sections of the phase

diagram in Fig. 7 show that the average fraction of
competing strategies changes similarly as in the canonical
rock-paper-scissors model [74–77]. The stability of the
three-strategy Dþ PD þ PC phase hinges strongly on the
continuous, albeit oscillating and sometimes nearly vanish-
ing, presence of all three strategies. As the inset in the
bottom panel of Fig. 7 shows, the average fraction of D
players can be extremely low, and therefore this three-
strategy phase can be stable only if the size of the lattice is
large enough. We use L ¼ 5400 to produce the results
presented in Fig. 7. If the size of the lattice would be
smaller, a strategy could easily die out due to random
fluctuations, in which case the evolution would terminate
into a single-strategy phase.
The invasion rates within the three-strategyDþPDþPC

phase, which exists under conditions that are more favor-
able for the survival of the PD strategy—specifically, if the

cost of punishment γ is lower—hence stabilizing the three-
strategy phase, can be measured directly by monitoring
the fractions of strategies when the evolution is initialized
from straight domain interfaces [78,79]. While the meaning
of w1 and w2 (see the inset in Fig. 8) is clear from the payoff
differences, the determination of w3 requires further clari-
fication. Namely, if only PD and D players would be
present along the interface, then we would of course
measure a net zero invasion rate because the two strategies
are neutral in the absence of cooperators. However, since
we are interested in their relation when PC players are
present too, we use parallel interfaces of PC and PD
players, separated by thin (width of 5 lattice sites) layers
of D players. In this way, although PC and PD players do
not interact directly, the setup properly describes the
movement of a D layer that is followed by punishing
cooperators. This “effective” invasion, which emerges only
in the presence of the third party, is highlighted by a dashed
arrow in the legend of Fig. 8.
The decay of w2 in the main panel of Fig. 8 highlights

that the PC → D invasions are relevant and in fact occur
rather frequently, but also that their intensity deteriorates as
the cost of punishment increases. Similarly, the PD → PC
invasions are also a recurring phenomenon based on the
positive value of the corresponding invasion rate w1,
which indicates that PD players would dominate PC players
during a direct competition as a consequence of the small
value of r. Nevertheless, this invasion rate also decays
slightly as γ increases, because the costs associated with the
main public goods game become less decisive comparing to
the costs of punishment that both these strategies should
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bear. Lastly, the w3ðγÞ function is also always positive,
because even a small cost evokes the second-order free-
riding effect (in this case, of course, associated with
avoiding the costs of antisocial punishment), such that in
the presence of PC players D players can invade PD
players. Accordingly, as the value of γ increases, so does
the w3 invasion rate, as shown in Fig. 8, which illustrates
directly that second-order free-riding on antisocial punish-
ment is responsible for the evolutionary success of proso-
cial punishment, specifically for the survival or even for the
complete dominance of the PC strategy.
The differences between these three invasion rates,

depicted in the inset of Fig. 8, allow us to understand
how the relative abundance of strategies changes as a
result. For example, w3 − w2 quantifies how the fraction of
nonpunishing defectors changes when we vary the cost of
punishment. An increase in the value of γ will support
strategy D, but the actual beneficiary will be her predator,
which is strategy PC. This seemingly paradoxical response
of the population to the increase of the punishment cost is a
well-known consequence of cyclic dominance, i.e., when
directly supporting a particular species will actually support
her predator [80]. This in turn explains why PC players rise
to full dominance when we increase the value of γ, as well
as why PD players dominate when we decrease it. Namely,
decreasing the punishment cost supports the PC strategy,
which is the prey of punishing defectors.

IV. DISCUSSION

We show how second-order free-riding on antisocial
punishment restores the effectiveness of prosocial punish-
ment, thus providing an unlikely and counterintuitive
evolutionary escape from adverse effects of antisocial
punishment. When the synergistic effects of cooperation
are low to the point of network reciprocity failing to sustain
it, cooperators that punish defectors can still rise to
dominance because nonpunishing defectors enable their
evolutionary success by capitalizing on second-order free-
riding and eliminating antisocial punishers as a result. If
conditions for punishment are somewhat more lenient, we
show that a three-strategy phase consisting of nonpunishing
defectors, punishing cooperators, and punishing defectors
becomes stable. The relations within this phase, and its
termination to an absorbing punishing cooperator or an
absorbing punishing defector phase, can be fully under-
stood in terms of invasion rates along straight interfaces
that separate different strategy domains. We demonstrate
that these results are robust to changes in the microscopic
dynamics, and we emphasize that the only important
property of the interaction structure is the limited inter-
action range rather than its topological details. Indeed, the
mechanism relies solely on spatial pattern formation, and is
the first stand-alone remedy against adverse effects of
antisocial punishment, not relying on any additional stra-
tegic complexity or other assumptions limiting its general

validity. Paradoxically, it turns out that antisocial punish-
ment is vulnerable to the same second-order free-riding that
is traditionally held responsible for preventing evolutionary
stability of prosocial punishment.
We emphasize that these phenomena cannot be observed

in well-mixed populations. Furthermore, a reliable study
of competing subsystem solutions requires a careful finite-
size analysis of the spatial system. Additionally, the usage
of random initial conditions may be misleading, especially
if using a small system size, because it does not necessarily
allow for all possible subsystem solutions to emerge
(before they could compete with one another). These
difficulties can be overcome by using suitable prepared
initial states, which allow the evolutionary stable subsystem
solution to form before competition between them unfolds.
Since pattern formation and invasions of propagating fronts
are general features of multistrategy complex systems, such
an analysis is a must when determining the consequences of
spatiality.
Our research also reveals that under conditions that favor

cooperation, for example, when the multiplication factor of
the public goods game is sufficiently high for the spatial
selection alone to sustain cooperation, antisocial punish-
ment is overall uncompetitive. In fact, even though we use a
fully symmetrical implementation of prosocial and anti-
social punishment throughout our paper, antisocial punish-
ers could survive only in very small regions of the
parameter space. We may thus conclude that under such
conditions cooperators that punish defectors should not be
afraid of retaliatory antisocial punishment by defectors.
In comparison to previous findings concerning the sym-

metrical implementation of prosocial and antisocial reward-
ing [54], we find that with punishment there is no lower
bound on the multiplication factor that would be impossible
to compensate with a sufficiently effective punishment
system. But there is a lower bound in case of rewarding:
i.e., below a critical value of the multiplication factor full
defection is unavoidable, and this regardless of just how
efficient the rewarding system might be. In the case of
punishment, ever lower values of the multiplication factor
simply require ever higher fines at a given cost for
cooperation to be sustained. Quite remarkably, the very
same process puts a noose around antisocial punishers,
which are defeated by second-order free-riding in their
own ranks.
Although social preference models of economic decision

making predict that antisocial punishment should not occur
[81,82], and despite the fact that antisocial punishment is
also inconsistent with rational self-interest and the hypoth-
esis that punishment facilitates cooperation, it is never-
theless remarkably common across human societies
[32–37]. In the light of this fact, it is important to extend
the theory of cooperation in the spatial public goods game
with the option that noncooperators can punish coopera-
tors. Rather unexpectedly, the detrimental effects of such
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antisocial punishment on the coevolution of punishment
and cooperation turn out to be minor simply by taking into
account the fact that the interactions among humans are
inherently structured, entailing a limited number of fre-
quently used links, rather than being random or well mixed.
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