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Abstract

The phenomenon of stochastic resonance has recently been found in many systems. Despite
the pre-conception of a destructive role of noise, its constructive role has been recognised,
in particular in ampli5cation of weak external signals, thereby facilitating signal detection and
transduction in complex systems. Although the stochastic resonance has been reported for many
systems in various 5elds of physics, chemistry and biology, the understanding of this phenomenon
is still limited. In the present paper, we explain the frequency dependent stochastic resonance
with the local divergence. In a model for intracellular Ca2+ oscillations, we calculate the local
divergence of noise-induced oscillations and show that areas of attractors with close to zero
local divergence are crucial for understanding the stochastic resonance, since they represent the
most 7exible and susceptible states of the system, which are thus most likely to be altered by
weak external stimuli and noise. With a detailed analysis of the temporal evolution of the local
divergence, we are able to explain the constructive as well as the destructive role of noise,
thereby shedding light on the typical bell-shaped dependency of the signal-to-noise ratio vs. the
noise intensity. The applicability of our results to other systems and their biological implications
are discussed.
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1. Introduction

Stochastic processes are a part of real life. Usually, noisy 7uctuations are considered
as destructive, hard eliminable components of complex processes. For example, in elec-
tronic circuits noise is known to impair signal detection and transduction. However, in
the past 10 years many experimental evidences were provided revealing a constructive
role of noise. Already in 1993, Douglass et al. [1] found that in the mechanoreceptors of
cray5sh tails, noisy environment caused by thermal 7uctuations improves the detection
of water currents evoked by a predator. Similar results were obtained by Braun et al.
[2] who found that noisy background improves the sensitivity of shark sensory cells.
Moreover, noise was successfully used in a clinical application for helping humans
with impaired hearing. Morse and Evans [3] suggested that noise could be arti5cially
added to a cochlear implant to improve its functionality. Recently, Manjarrez et al. [4]
reported about the noise-induced coherence between spinal and cortical neuronal
ensembles in a cat. For human brain, it has been shown that the electroencephalographic
responses evoked by mechanical tactile stimuli can be optimised by adding noise [5].
In order to explain the constructive role of noise, many theoretical studies have been

devoted to examine the eIects of noise and other weak external stimuli on the behaviour
of dynamical systems. It has been shown that noise enhances, i.e., ampli5es, weak
input signals and herewith facilitates detection and transduction of weak signals. The
constructive role of noise depends in a resonance-like manner on the noise intensity.
This phenomenon, known as stochastic resonance, has been reported in a broad variety
of physical [6], chemical [7,8], and biological systems [9–15]. For a comprehensive
review see Ref. [16]. The stochastic resonance is predominantly encountered in bistable
systems, where the transitions between two coexisting states are induced by noise.
However, stochastic resonance was also reported in the vicinity of Hopf bifurcations
[17–20], where the constructive role of stochastic in7uences is related to the noise
stimulated transitions between two quasi-stationary dynamical states.
In some cases stochastic resonance phenomena can be observed in the absence of

any deterministic external inputs, thus they are induced solely by noise [21–26]. It
has been shown that without external deterministic inputs coherence of noise-induced
oscillations is maximized for an optimal level of noise intensity. This phenomenon
was termed as coherence resonance [23–25], or internal stochastic resonance [26].
Furthermore, the phenomenon of coherence resonance was also reported in the absence
of external stochastic inputs, thus induced solely by the presence of internal noise
[27–29]. This phenomenon, termed as intrinsic coherence resonance [27], originates
from stochastic opening and closing of individual ion channels due to thermal 7uctua-
tions, thus introducing intrinsic noise into the membrane potential of the cell, whereas
the noise intensity at which the most regular cell activity can be found is determined
by the size of ion channel clusters [28]. In particular, clustering of calcium release
channels into appropriate sizes increases the sensitivity of calcium responses, thereby
optimising intracellular calcium signalling in many cell types [29].
The existence of internal stochastic resonance in a dynamical system predominantly

indicates that the system has a preferred oscillation frequency, i.e., characteristic time
scale, which is present in the system for all noise intensities. This preferred



M. Perc, M. Marhl / Physica A 332 (2004) 123–140 125

oscillation frequency characterises the dynamics of the system even in the presence of
continuous external stimuli. Thus, the ability of the system to respond synchronously
to a periodic external signal is rather small, and the characteristic time scale remains
largely present in the system despite external in7uences (see Ref. [30]). Therefore, such
systems mostly posses very low frequency variability, which is often in contradiction
with experimentally observed features of many biological systems, like for example
behaviour of neuron ensembles [31] or gene expression and enzymatic activities [32,33].
Although noise undoubtedly has a constructive role in various dynamical systems,

only few studies were aimed to explaining these phenomena [15,30]. It is widely agreed
that noise ampli5es deterministic input signals, so that the probability of crossing a
threshold of a bifurcation point increases. Thereby, noise-induced oscillations come
into existence, which at certain noise intensity have the best correlation with the de-
terministic input signal. In case of internal stochastic resonance, the noise itself is
considered as a suprathreshold external signal, which causes the system to oscillate
with its characteristic frequency. The constructive roles of noise are mostly measured
by calculating the so-called signal-to-noise ratio (SNR) (see Ref. [35]). The SNR mea-
sures the level of determinism that is present in the system for various noise intensities.
For example, if the system is forced with a continuous subthreshold signal that has a
well-de5ned frequency, the SNR measures how much of this frequency is present in
the response of the system at various noise intensities. Typically, the obtained results
show a resonance like dependency of the SNR on the noise intensity.
Recently, several studies were devoted to studying the SNR for dynamical sys-

tems in the presence of noise and deterministic external stimuli with various forcing
frequencies [15,36–39]. It has been shown that some dynamical systems are able to
respond coherently to subthreshold external signals with various forcing frequencies
if noise with an optimal frequency dependent intensity is added [15,37,39]. This phe-
nomenon was termed as frequency dependent stochastic resonance [15]. The main
property of the frequency dependent stochastic resonance is that the noise intensity at
which the peak SNR value is obtained depends crucially on the frequency of the input
signal. Despite the fact, that the frequency dependent stochastic resonance was reported
by several authors, the understanding of this interesting phenomenon is still very
limited.
The aim of the present study is to explain the frequency dependent stochastic reso-

nance in a mathematical model for intracellular Ca2+ oscillations proposed by Marhl
et al. [40]. We investigate the responses of the examined mathematical model to noise
and subthreshold periodic input signals in the vicinity of a subcritical Hopf bifurcation.
By applying solely suprathreshold noise to the system, the latter doesn’t express any
preferred oscillation frequency, and is thus characterised by high frequency variabil-
ity. Therefore, for various noise intensities, the system is able to oscillate coherently
with subthreshold periodic input signals in a wide frequency range. In order to achieve
the best coherence between the system output and the external periodic signal with
diIerent forcing frequencies, diIerent optimal noise intensities are required. This is
a characteristic property of the frequency dependent stochastic resonance. To explain
this frequency dependent stochastic resonance, we calculate the time course of local
divergence for noise-induced oscillations. We focus on parts of attractors with close to
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zero local divergence and study the eIects of noise and the subthreshold deterministic
input signals on these parts. Separately, we study the constructive and the destructive
role of noise, and are herewith able to explain the ascending as well as the descending
part of the resonance dependency of the SNR vs. the noise intensity. The basic intuitive
idea is that parts of attractors with close to zero local divergence are weakly attractive
and can therefore be most easily modi5ed by external signals. The modi5cation of the
basic attractor with a subthreshold deterministic signal is only possible if in addition to
the subthreshold forcing also weak noise is introduced to the system. The added noise
reduces the threshold and acts as an ampli5er of the weak external signal. This is the
constructive role of noise. By increasing the noise intensity beyond the optimal value,
noise becomes destructive. This is due to the fact that at higher noise intensities, noise
alone becomes a suprathreshold signal and is thus able to modify the basic attractor.
Since the system has the lowest threshold in the most 7exible parts of the attractor,
which are characterised by close to zero local divergence, studying the local divergence
is of much importance in explaining the stochastic resonance eIects.
The paper is structured as follows. Section 2 is devoted to the formal description of

the examined mathematical model. In Section 3 we present the obtained results. Finally,
in the last section we discuss possible biological implications of the results and brie7y
compare them with results obtained in other systems with diIerent properties than
studied in this paper.

2. Mathematical model

We use a mathematical model for intracellular Ca2+ oscillations, originally proposed
by Marhl et al. [40]. The model consists of three basic model compartments, i.e.,
the cytosol, the endoplasmic reticulum (ER), and the mitochondria (for details see
Ref. [40]). Consequently, the three main variables are: free Ca2+ concentration in the
cytosol (Cacyt), free Ca2+ concentration in the ER (Caer), and free Ca2+ concentration
in the mitochondria (Cam). The evolution of the model system is governed by the
following diIerential equations:

dCacyt
dt

= Jch − Jpump + Jleak + Jout − Jin + JCaPr − JPr ; (1)

dCaer
dt

=
�er
�er

(Jpump − Jch − Jleak) ; (2)

dCam
dt

=
�m
�m

(Jin − Jout) ; (3)

where

Jch = kch
Ca2cyt

Ca2cyt + K
2
1

(Caer − Cacyt) ; (4)
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Jpump = kpumpCacyt ; (5)

Jleak = kleak(Caer − Cacyt) ; (6)

JPr = k+CacytPr ; (7)

JCaPr = k−CaPr ; (8)

Jin = kin
Ca8cyt

Ca8cyt + K
8
2

; (9)

Jout =

(
kout

Ca2cyt
Ca2cyt + K

2
1

+ km

)
Cam : (10)

Concentrations of the free (Pr) and the occupied (CaPr) protein binding sites are
given by two conservation relations (see Ref. [40]):

Pr = Prtot − CaPr ; (11)

CaPr = Catot − Cacyt − �er
�er
Caer − �m

�m
Cam : (12)

To study the eIects of noise and subthreshold external periodic inputs on the
behaviour of the model system, we use the additive Gaussian noise (
(t)) with the
standard deviation � and zero mean value, and the periodic pulse train (f(t))
de5ned as

f(t) =



a if (tmod �−1

f )¿ (�−1
f − d) ;

−a if ((t − d)mod �−1
f )¿ (�−1

f − d) ;
0 else ;

(13)

where �f is the oscillation frequency, d is the duration and a is the amplitude of the
periodic pulse trains. Both the additive Gaussian noise (
(t)) and the periodic pulse
train (f(t)) are introduced to the model system as additional Ca2+ 7uxes through the
cell membrane. Thus Eq. (1) obtains two additional terms in form of 
(t) and f(t). Due
to these additional Ca2+ 7uxes, the total concentration of calcium in the cell (Catot) is
no longer constant. An additional diIerential equation is needed for calculating changes
in the total Ca2+ concentration in the cell:

dCatot
dt

= f(t) + 
(t) : (14)

The complete set of model equations is given by Eqs. (1)–(14). In the paper, all
results are calculated for the parameter values given in caption of Fig. 1 if not otherwise
stated, whereas a complete presentation of their meaning and biological relevance is
given in Ref. [40].
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Fig. 1. Bifurcation diagram of the examined mathematical model without inclusion of noise and external
deterministic stimuli. Parameter values are: kch=469 s−1, kleak=0:05 s−1, kpump=20 s−1, kin=300 �M s−1,
kout = 125 s−1, km = 0:00625 s−1, k+ = 0:1 �M−1 s−1, k− = 0:01 s−1, K1 = 5:0 �M, K2 = 0:8 �M,
Prtot = 120 �M, �er = 0:01, �er = 0:0025, �m = 0:01, �m = 0:0025.

3. Results

To determine basic dynamical properties of the model system (Eqs. (1)–(12)) without
applying 
(t) and f(t), we carry out the bifurcation analysis. Since 
(t) and f(t) aIect
the total concentration of calcium in the cell, it is reasonable to choose Catot as the
bifurcation parameter. The bifurcation diagram of Cacyt vs. Catot is presented in Fig. 1.
For diIerent values of Catot the examined mathematical model exhibits various types of
Ca2+ oscillations from simple spiking to chaotic bursting oscillations. The oscillatory
regime starts and ends with a subcritical Hopf bifurcation (HB1 and HB2 in Fig. 1)
at Catot = 90:3384 �M and Catot = 112:552 �M, respectively. We focus on the vicinity
of HB1. Therefore, we set the initial value for Catot in Eq. (14) at 90:0 �M. Note that
for this value of Catot only a stable steady state exists (see inset of Fig. 1). Thus, if
no 
(t) or f(t) is applied to the system, the system cannot oscillate for any initial
conditions.
We start by examining solely the eIects of noise on the behaviour of the model

system, i.e., we apply noise of various intensities (�). In Fig. 2, time courses of
Cacyt for various � are presented. For small noise intensities, the threshold for the
oscillatory regime is not reached and the system remains quiescent. For higher values of
�, 5rst only few spikes emerge, whereas for even higher noise intensities a predominant
oscillation frequency of the noise-induced oscillations rises signi5cantly (see Fig. 2).
Results in Fig. 2 show that the system has no characteristic time scale or preferred

oscillation frequency if solely noise is introduced to the system. In fact, by changing
the noise intensity almost any oscillation frequency of the system may be obtained. This
assures high frequency variability of the system in a wide frequency range. To con5rm
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Fig. 2. Solely noise induced oscillations for several values of �.

this mathematically, we calculate the power spectra of noise-induced oscillations for
diIerent values of �. The results presented in Fig. 3 show that an almost continuous
frequency distribution can be obtained by varying �. This con5rms that the examined
mathematical model is indeed characterized by extremely high frequency variability.
Since the system possesses high frequency variability, it remains of interest to

investigate if this property assures the system to respond 7exibly to weak external
periodic stimuli, i.e., if the system is able to adjust its frequency in response to an
external signal. To this purpose, in addition to the Gaussian noise, we introduce the
small-amplitude external periodic forcing f(t) (see Eq. (13)), and examine the system
ability to oscillate synchronously, i.e., with the same frequency as the external signal.
For all calculations, we choose a = 0:001 �M s−1 and d = 0:012�−1

f , whereas the ex-
ternal signal frequency (�f) is given in 5gure captions. Note that the chosen initial
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Fig. 3. Power spectrums of solely noise induced oscillations for several values of �.

value Catot = 90:0 �M and the value of Catot at the bifurcation point HB1 of the basic
model system are so much apart (see inset of Fig. 1) that the periodic pulse train
f(t) alone cannot induce any oscillations, and is thus considered as a subthreshold
signal. Therefore, only if �¿ 0, noise-induced oscillations can appear. In Fig. 4, we
show time courses of Cacyt together with f(t) for various �. It can be seen that an
optimal noise intensity exist for which the system is almost 1:1 synchronised with the
external signal. Fig. 4 shows that for small � only few spikes emerge. It should be
noted, however, that each spike exactly matches one of the spikes of the periodic pulse
trains. This gives the output signal a deterministic character. On the other hand, for
larger � the eIect of noise becomes predominant and the system begins oscillating in
a stochastic manner, independently of the frequency of the periodic pulse trains.
To quantify mathematically the deterministic/stochastic nature of the system’s

response to 
(t) and f(t), we calculate the autocorrelation function for the three time
series of Cacyt presented in Fig. 4. The autocorrelation function (�(�)) can be calculated
according to the de5nition:

�(�) = lim
t→∞

1
t

∫ t

0
Cacyt(t + �)Cacyt(t) dt : (15)

In addition to the autocorrelation function also the normalised interspike interval
histograms (ISIH) were calculated. Both, the autocorrelation function and the ISIH
are commonly used methods (see for example Ref. [15]) for quantifying the determin-
istic nature as well as for determining the predominant oscillation frequency of a time
series.
The autocorrelation functions and the ISIH for the Cacyt time series in Fig. 4 are

presented in Fig. 5. For lower �, the deterministic nature of the Cacyt time series is
clearly legible. However, due to the low noise intensity, the system rarely responds
to the deterministic subthreshold periodic signal, and the autocorrelation of the signal
is therefore rather weak. This is con5rmed by the ISIH which shows almost equally
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Fig. 4. Temporal evolution of Cacyt for several values of � when an external periodic pulse train with
a = 0:001 and �f = 1:00e−3 Hz is applied.

distributed maximums at integer multiples of the forcing period. For the optimal noise
intensity (middle part of Fig. 5), the deterministic input is ampli5ed enough to provoke
Cacyt spikes at almost all spikes of the input signal f(t). Consequently, the correspond-
ing autocorrelation is very high, and the ISIH has a very concentrated maximum at
the forcing frequency, with some lower peaks at its higher harmonics. By increas-
ing � over the optimal value, the periodic input is ampli5ed even further, however,
the deterministic in7uence of the periodic pulse trains is completely blurred by noise
(see lower part of Fig. 5). This shows that the optimal response of the system
results from a kind of competition between the noise and the periodic input. If � is too
small, the deterministic input signal is not ampli5ed enough and the system doesn’t
respond to every spike of the pulse train; if the noise intensity is too high, the external
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Fig. 5. Autocorrelation function and the normalised interspike interval histograms (ISIH) for the Cacyt time
courses presented in Fig. 4.

periodic signal is completely overruled by noise and the synchronisation with the ex-
ternal periodic signal is completely lost.
Results in Figs. 4 and 5 show that noise plays a crucial role in amplifying the deter-

ministic subthreshold input signal and has a constructive role in assuring the coherence
between the system’s output and the input signal. To quantify the constructive role of
noise, we calculate the SNR. For calculating the SNR, we take use of a de5nition orig-
inally proposed by Palm et al. [41]. They de5ned a correlation coeOcient (C) between
the pulse train and the output time series of the system. Both time series are divided
into n bins with width �, whereas the number of pulses in the i-th bin is denoted by
Xi and Yi for the pulse train and the time series of Cacyt, respectively. The width �
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Fig. 6. The SNR in dependence on � for various frequencies of the external periodic pulse trains.

is set small enough so that Xi and Yi can only take the value 0 or 1. The correlation
coeOcient C is de5ned as [41]

C =
Z − (

∑
i XiYi)=n√∑

i Xi(1− (
∑

i Xi=n))
∑

i Yi(1− (
∑

i Yi=n))
; (16)

where Z is the number of coincident 5rings. In our case, the calculations were made
for very long time series so that n → ∞. Applying this to Eq. (16), we obtain the
following equation for calculating the SNR:

SNR =
Z√∑

i Xi
∑

i Yi
; (17)

where all symbols have the same meaning as in Eq. (16). Similar measures for quanti-
fying the SNR were already used previously by Kanamaru and Okabe [12], and Reinker
et al. [15], for example.
Using Eq. (16), we calculate the SNR for various oscillation frequencies of the pulse

train (�f). In Fig. 6, the results are presented for �f = 1:00e−3 Hz, �f = 1:33e−3 Hz,
�f = 2:00e−3 Hz, �f = 2:50e−3 Hz, and �f = 4:00e−3 Hz. It can be seen that the reso-
nance peak for lower pulse train frequencies occurs at lower noise intensity, whereas
for higher frequencies of the pulse train the resonance peak occurs at higher noise in-
tensity. This is a typical example of frequency dependent stochastic resonance, which
was previously encountered only in neural systems (see Refs. [15,36–39]). Another im-
portant feature of the results presented in Fig. 6 is a signi5cant decrease in the height
of the SNR peaks, which sets in for higher pulse train frequencies (�f).

Taken together, in Fig. 6 we showed that the height of the SNR peak value as well
as the noise intensity at which this peak occurs depend crucially on the oscillation
frequency of the periodic pulse trains. Moreover, we showed that Cacyt oscillations,
presented in Fig. 4, have a deterministic nature for lower noise intensities, which is
best expressed at the SNR peak value (see middle part of Fig. 5), whereas at higher
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noise intensities this determinism is lost, thus stochastic in7uences dominate in the
behaviour of the system (see lower part of Fig. 5).
To explain these results, we calculate time courses of the local divergence for the

noise-induced oscillations. In our previous works [42,43], we showed that the diver-
gence could be taken as a measure for estimating the system’s ability to respond
synchronously to an external signal. We showed that close to zero divergence largely
facilitates the 7exibility of the system, thus enabling it to respond coherently to weak
external signals. Since in the present study, Gaussian noise and the periodic pulse train
are considered as external signals, the same reasoning could also be used for explaining
the above-presented results. We calculate the local divergence for the vector 5eld:

F(Cacyt ; Caer ; Cam ; Catot) = (FCacyt ; FCaer ; FCam ; FCatot )

=
(
dCacyt
dt

;
dCaer
dt

;
dCam
dt

;
dCatot
dt

)
(18)

according to the de5nition:

∇ · F(Cacyt ; Caer ; Cam ; Catot) =
9FCacyt
9Cacyt

+
9FCaer
9Caer

+
9FCam
9Cam

+
9FCatot
9Catot

; (19)

where (Cacyt, Caer, Cam, Catot) is a point on the attractor.
First, we calculate the local divergence for the solely noise induced oscillations

presented in Fig. 2. The upper part of Fig. 7 shows the time course of the local
divergence for oscillations induced by weak noise (�=0:0073). Large areas with close
to zero local divergence are well expressed. In accordance to our previous studies
[42,43], the system is highly 7exible in such areas and is thus able to respond even to
extremely weak external signals. On the other hand, parts with highly negative local
divergence represent the most rigid areas that are diOcult to modify even with high
noise intensities. Since parts with close to zero local divergence are highly susceptible
to external signals, noise with increasingly higher intensities (�=0:037 and 0.10) is able
to provoke more and more new spikes. Thereby, the frequency of the noise-induced
Ca2+ oscillations rises at higher �, as shown in Fig. 2. In fact, noise with higher �
cuts the 7exible parts of the time course, and consequently the susceptible parts with
close to zero local divergence areas disappear (see Fig. 7).
Moreover, calculations of the local divergence enable us to explain the phenomenon

of the stochastic resonance presented in Fig. 6. Curves in Fig. 6 have a typical
bell-shaped form, showing that weak noise has a constructive role, whereas higher
noise intensities destruct coherent system responses. Fig. 8 shows the local divergence
of the time courses presented in Fig. 4, i.e., time courses before the resonance peak, at
the peak and after the peak. At lower �, noise acts as an ampli5er of the deterministic
input signals, which results in the appearance of 5rst spikes, as shown in the upper
part of Fig. 4. For this case, the time course of the local divergence is characterised by
extensive regions of close to zero local divergence (see Fig. 8), which in accordance
with our previous statements expresses high 7exibility of the system. By further en-
hancing the noise intensity, the excitability of the system rises, and thus the probability
of evoking new Cacyt spikes by the periodic pulse train becomes higher. Eventually,
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Fig. 7. Temporal evolution of the local divergence for solely noise induced oscillations at several values
of �.

this leads to the resonant response of the system in which the best compromise
between the noise intensity and the external periodic signal is found. At the peak SNR
value, noise enhances the excitability of regions with close to zero local divergence to
a degree at which noise itself cannot evoke spikes, however, enables the weak external
periodic signal to evoke Cacyt spikes at almost all peaks of the f(t) (see middle part
of Fig. 8). Under such conditions, the excitability of 7exible regions with close to zero
local divergence is optimally tuned with respect to the forcing signal. If namely the
noise is further enhanced, the noise itself can force the system to 5re spikes, which
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Fig. 8. Temporal evolution of the local divergence for several values of � when an external periodic pulse
train with a = 0:001 and �f = 1:00e−3 Hz is applied.

reduces the coherency between the system’s response and the external periodic signal
(see lower part of Fig. 8).
Furthermore, the calculations of the local divergence (Figs. 7 and 8) enable us to

explain lowering and shifting of the peak SNR values in Fig. 6 to higher � if higher
frequencies of the external periodic signal are applied. Since the local divergence is
not constantly close to zero at the highly susceptible parts of the time course but
slightly approaches the zero value (see Fig. 7), increasingly larger noise intensities are
required to make the system optimally excitable for higher frequencies of the periodic
pulse trains. Therefore, in Fig. 6, the peak SNR values are shifted to higher � for
higher pulse train frequencies. Concomitantly, the higher noise intensities required for
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the optimal level of excitability for higher frequencies of the periodic pulse trains
reduce the coherent responses of the system. This is because the border between the
random eIects of noise and the deterministic in7uences of the periodic pulse trains with
the given constant amplitude becomes increasingly eIaced as the noise intensity rises,
and thus the maximum value of the SNR decreases by increasing forcing frequencies.
Therefore, the peak SNR values become smaller at higher forcing frequencies as shown
in Fig. 6.

4. Discussion

In this paper, we investigated the responses of a mathematical model for intracellular
Ca2+ oscillations to deterministic external stimuli with various oscillation frequencies
in the presence of Gaussian noise. We have shown that the system doesn’t possess
a characteristic time scale, i.e., a preferred oscillation frequency. In fact, with various
noise intensities a broad and almost continuous frequency spectrum can be obtained.
This high frequency variability enables the system to adjust its oscillation frequency to
various subthreshold external stimuli. Since diIerent frequencies of the external stimuli
require diIerent noise intensities for best correlation (highest SNR) between the pulse
train and the output of the system, the examined mathematical model exhibits a typical
frequency dependent stochastic resonance.
In order to explain the obtained results we have calculated the time course of local

divergence for the noise-induced oscillations. The interrelation between local divergence
and the susceptibility of the system to external in7uences seems reasonable, since the
local divergence represents the spatial attractive properties of the system’s attractor.
Therefore, in areas where the local divergence is close to zero, the system is very
susceptible and is able to respond even to very weak external signals. On the other
hand, highly negative local divergence areas characterise very rigid non-7exible states
of the system, which can be only little altered by external signals. We used the same
reasoning in our previous articles [42,43] to explain the system ability to respond
synchronously to an external periodic forcing signal.
The presented results in Figs. 7 and 8 show that in order to achieve good correlations

between the system’s output and the high frequency deterministic external stimuli, the
system has to be altered in increasingly low local divergence areas. Consequently,
higher noise intensities are required to amplify the subthreshold periodic signal strong
enough to provoke such high-frequency spikes of the system. Hence, the peak values of
the SNR in Fig. 6 are shifted to higher noise intensities as the frequency of the periodic
pulse trains increases. Furthermore, due to the higher noise intensities required for such
high-frequency correlations, also the maximum value of the SNR decreases, since the
deterministic step-like shape of the periodic pulse trains is increasingly overruled, i.e.,
blurred by noise. Therefore, the majority of evoked spikes are provoked randomly, and
the response of the system is thus much weaker correlated with the periodic pulse train.
Frequency dependent stochastic resonance was previously reported for the

Hindmarsh–Rose neuron model by Reinker et al. [15]. In order to explain their
results, they calculated the complex impedance of the model and obtained one single
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singularity, i.e., impedance maximum, at a certain system frequency. However, the
highest peak SNR value achieved at the lowest noise intensity was obtained at a sig-
ni5cantly lower external forcing frequency as suggested by their mathematical analysis.
Nevertheless, they provided an intuitive explanation for their results, suggesting that
the high frequency external forcing requires higher noise intensity in order to have the
same likelihood of crossing the system’s threshold in a shorter amount of time. Our
preliminary calculations of the local divergence for the Hindmarsh–Rose neuron model
show that the same reasoning as applied for explaining the results in the present paper
can also be used to explain the frequency dependent stochastic resonance in Ref. [15].
Furthermore, by calculating the local divergence for the Fitzhugh–Nagumo neuron

model we can explain the robustness of the system reported previously by MassanQes
and Vicente [30]. They showed that the Fitzhugh–Nagumo neuron model possesses
an internal characteristic time scale, which remains largely present in the system for
all external forcing frequencies. Our preliminary studies show that the system investi-
gated in Ref. [30] is characterized by extensive highly negative local divergence areas
with almost no regions with close to zero divergence for system’s states in the vicinity
of the supercritical Hopf bifurcation that marks the transition between the stationary and
the oscillatory regime. Therefore, if the applied forcing frequency is signi5cantly
diIerent from the internal characteristic oscillation frequency of the system, it is vir-
tually impossible to amplify the subthreshold periodic signal high enough so that the
forcing frequency would be the predominant one in the system. Only if very high noise
intensities are applied, the deterministic forcing signal is able to provoke oscillations,
which are, however, due to the required higher noise intensity completely uncorrelated
with the forcing signal, and thus express a stochastic nature, with the system’s inter-
nal frequency background, which manifests clearly in the calculated power spectra in
Ref. [30].
Authors in Ref. [30] also report, that a high degree of internal coherence is bio-

logical undesirable, since it predicts high robustness, preventing the system to respond
eOciently to external changes, thereby perceiving only little information from the en-
vironment. Moreover, results in Ref. [30] show that in such cases, even at the peak
SNR value, the frequency distribution of the system’s response is much more broad
and diIuse; even more so if the forcing frequency is largely diIerent from the char-
acteristic internal frequency of the system. From the biological point of view, such
signal transduction is ineOcient, since it carries less biologically relevant information.
On the other hand, the model studied in this paper expresses high frequency variability,
which enables it to respond synchronously to various forcing frequencies (see Fig. 6).
Furthermore, the frequency distribution of the system’s output at the peak SNR value
is extremely concentrated around the forcing frequency (see Fig. 5). This is of special
biological importance, since biologically relevant information is known to be predomi-
nantly frequency encoded (see Refs. [32–34,44–47]). Since in general, the characteristic
internal time scale is found predominantly in the vicinity of supercritical Hopf bifurca-
tions [26,30], it remains of interest to investigate the potential biological relevance of
diIerent bifurcation types that can be encountered in biological systems [48,49]. Our
results indicate that subcritical Hopf bifurcations with typical hard excitation properties
[50] are biologically more relevant, since in the vicinity of such bifurcations oscillations
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are characterized with high frequency variability, often combined with low local diver-
gence, which enables the system to respond 7exibly to various sub and suprathreshold
external signals.
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