
Physica A 502 (2018) 570–575

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Heterogeneous investments promote cooperation in
evolutionary public goods games
QunWang a, Hanchen Wang a, Zhuxi Zhang c, Yumeng Li a,b,*, Yu Liu a,*,
Matjaž Perc d,e,f,**
a School of Electronic and Information Engineering, Beihang University, Beijing 100191, PR China
b Shen Yuan Honors College, Beihang University, Beijing 100191, PR China
c National Transportation Preparation Office, Beijing 100036, PR China
d Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
e Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, SI-2000 Maribor, Slovenia
f Complexity Science Hub, Josefstädterstraße 39, A-1080 Vienna, Austria

h i g h l i g h t s

• Heterogeneous investments promote cooperation.
• The microscopic mechanism behind the promotion of cooperation is revealed.
• Heterogeneous investments lead to more robust clusters of cooperators.
• Future research in terms of asymmetric influences on game dynamics is discussed.
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a b s t r a c t

The public goods game is widely accepted as a suitable theoretical paradigm for explaining
collective cooperation. In this paper, we investigate the impact of heterogeneous invest-
ments on cooperation in groups, where the investment of one player to a particular group
depends on the fraction of cooperators in that group. Our research reveals that the level
of cooperation is significantly promoted as the level of heterogeneity in the investments
increases. By studying the payoffs of players at the boundaries of cooperative clusters,
we show that the positive effect on the evolution of cooperation can be attributed to the
formation of clusters that aremore robust against invading defectors. The presented results
sharpen our understanding of cooperation in groups that are due to heterogeneity and
related asymmetric influences on game dynamics.

© 2018 Published by Elsevier B.V.

1. Introduction

The emergence of cooperation among selfish individuals contradicts Darwin’s theory, which has attractedmuch attention
in diverse disciplines [1–7]. To explain this challenging issue, researchers often resort to a powerful theoretical framework
of evolutionary game theory [8–11]. Two simple games, the prisoner’s dilemma game and the snowdrift game, are widely
used as typical paradigms in this field. In a typical prisoner’s dilemma or snowdrift game, each player can adopt two pure
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strategies: cooperate (C) or defect (D). Then, the players play the game in pairs to earn payoff. If they both take the same
action for C or D, each will get a payoff of reward (R) or punishment (P). If they choose distinct strategies, the defecting
player is tempted to achieve the maximum payoff (T ), and the cooperating player receives the sucker payoff (S), with the
precondition 2R > T + S. The ranking of these four payoff for the prisoner’s dilemma game is T > R > P > S, and it is
T > R > S > P for the snowdrift game. The main difference between the games is that the evolutionary stable strategy
in the prisoner’s dilemma game is mutual defection, whereas in the snowdrift game, mutual defection leads to the lowest
payoffs for both players [12–15].

As the prisoner’s dilemma game and the snowdrift game are generally used to characterize pairwise interactions, the
public goods game (PGG) is used for group interactions [16]. Indeed, the PGG has received unprecedent attention in the
physics community in the past decade [17–42]. In the original PGGmodel, all N participants simultaneously decide whether
to contribute (cooperate) or not (defect) to a common pool. Then, the total investment of all cooperators in the public pool
is multiplied by a factor r (1 < r < N) and contributes equally to all players, regardless of their contributions. Namely, the
whole system can reach the best state when all participants invest with the maximum amount to the public pool. However,
the Nash equilibrium in PGG is all defection. Participants are faced with the temptation of free riding because all players do
better when contributing zero than when they contribute something, regardless of what anyone else does, which can also
be called the ‘‘tragedy of the commons’’ [43].

Many real-world systems can be described as networks, in which nodes represent the interacting individuals and
edges characterize their interactions. One interesting research direction is to study the evolutionary game dynamics on
networks. It has been shown that cooperative behavior can emergewhen individuals interact on networks, including regular
lattices, small-world, scale-free and dynamical networks [44,2]. Recently, several mechanisms have been put forward to
illustrate the evolutionary cooperation of PGG. Guan et al. found that the variation in strategy transfer capability can
promote the cooperation level [45]. Segbroeck et al. studied the evolutionary dynamics of repeated group interactions,
leading populations to engage in dynamics involving both coordination and coexistence [46]. Santos et al. found that social
diversity can remarkably promote cooperation onheterogeneous graphs [47]. Szolnoki et al. focused on the PGGwith delayed
distribution and found decelerated invasion andwaning-moon patterns [48], while in [49] it was even found experimentally
that punishment diminishes the benefits of network reciprocity, to name just some examples.

In many previous mechanisms, one cooperator will contribute the same value to the participating groups. However, in
reality, the investment of each cooperator can be heterogeneous according to the environment. Thus, it is natural to consider
investment heterogeneity in the PGGmodel. Cao et al. studied an unequal investmentmechanism on a scale-free network, in
which the investment of players is related to its degree [50]. Yuan et al. presented an investment heterogeneitymechanism in
PGG on a square lattice, which allowed the investment of cooperators to bemapped to the fraction of cooperators inside [51].
Bothworks found that cooperation is promotedby theheterogeneous investmentmechanism; however, the total investment
of each player is rather different. To further explore the effect of heterogeneous investment on cooperation, we fix the total
investment of all players to be 1. It is found that cooperation is still markedly enhanced, and the results are examined by the
payoff differences along the boundaries of cooperative domains from a microscopic point of view.

2. The model

Here, each player is located on a site of 100 × 100 square lattice with periodic boundary conditions and interacts with its
Von Neumann neighborhood. Initially, all players are designated as a cooperator (C) or a defector (D) with equal probability
0.5. Then, each player participates in ki+1 PGG groups,where one PGG group is centered around itself and the other ki groups
are correspondingly centered around their nearest neighbors [47]. The total investment of all players is set to 1. Here, we
hypothesize that the investment of a cooperator in a PGG group depends on the proportion of cooperators inside that group.
gy
x is the investment of player x in the PGG group centered around y.

gy
x =

sx(Nc)αy∑
j∈Ωx

(Nc)αj
(1)

where Nc is the number of cooperators inside x-centered PGG group and Ωx is the community composed of the neighbors of
x and itself. sx = 1 represents C and sx = 0 represents D. All contributions are multiplied by the factor r and are then equally
divided among all players. Under such a mechanism, the payoff of an individual x associated with the PGG group centered
on individual y is given by

mx,y =
r

ky + 1

ky∑
i=0

gy
i − gy

x (2)

where i represents the ith neighbors of player y. The total payoff of the player x can be expressed as

Mx,y =

∑
y∈Ωx

mx,y (3)
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Fig. 1. The cooperation frequency ρc as a function of the synergy factor r for different values of α. Inset: The red linemarks the transition position to pure C ,
and the black line marks the transition position to pure D, depending on the compassion parameter α. Noteworthy, these results are to a large independent
of the structure of the interaction network, as long as r/G is considered as the dilemma strength [5], where G = ki + 1 is the group size (see also [52]). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where Ωx is the community made up of the neighbors of x and itself. In the process of evolution, player x randomly selects
one of the neighbors to update the strategy and then adopts the strategy of ywith a probability

Wx→y =
1

1 + exp[(Mx − My)/k]
(4)

where k characterizes the uncertainty by strategy adoptions [52]. In this paper, we set k = 0.1, although other values do not
significantly affect out results.

The cooperation frequency is obtained by averaging the last 2000 steps after a transient time of 20,000 steps. For each
parameter setting, the final results are averaged over more than 50 independent runs.

3. Results

We first investigate the effect of heterogeneous investment on cooperation frequency ρc in Fig. 1.Whenα = 0, themodel
reduces to the traditional PGG. Herein, cooperators emerge at approximately r = 3.7 and dominate the whole systemwhen
r = 5.25. With the increment of α, the cooperation frequency increases monotonously. When α = 2, cooperators emerge
even at r = 2.48, and defectors quickly go extinct at r = 2.7. We then examine the phase transition point, as shown in the
inset of Fig. 1.With the increment ofα, the range of both the pureD state and themixed state is greatly reduced. Furthermore,
the range of pure C state will become larger with a large value of α.

To further illustrate the mechanism of cooperation enhancement through heterogeneous investment, we investigate the
time evolution of cooperation frequency for different values of the parameter α (Fig. 2(a)). In the initial stage of evolution,
C and D are evenly distributed in the network. Cooperators are easily invaded by defectors, leading to a decrease in ρc . For
a standard PGG (α = 0 ), cooperators cannot form clusters and will ultimately go extinct. As the heterogeneous investment
mechanismworks (α = 0.2, 0.4, 0.6), cooperators can survive and form robust clusters (Fig. 2(b)–(d) shows the distribution
of C and D at 1000 generations for different values of α). The stationary state of the whole system steps into a mixed C + D
state and the size of cooperator clusters’ mushrooms (Fig. 2(b)–(d)). When α = 0.8, cooperators occupy relatively the whole
sites at T = 1000 (Fig. 2(e)). When α grows even larger (α = 1, 2), the whole system will rapidly transfer to the pure
C state.

To explain the promotive impact of the parameter α on the evolution of cooperation, we show a toy model of the
investment distribution to examine the interaction for boundary players (Fig. 3(a)). The central cooperator (marked in black)
will participate in its 5 non-Neumann neighborhood groups {η, δ, γ , θ, ε}. In the traditional PGG (α = 0), the investment
of the central C player to different groups is unified to 0.2, and its total payoff is 1.516. For the central D player (marked in
black), its total payoff is 1.332. When α = 2, the central C invests 0.06 to group {γ , δ}, 0.13 to group {η} and 0.37 to group
{θ, ε}. The total payoff of the central C increases to 1.866, and the payoff of the central D player is reduced to 0.675. The
difference between C and D is markedly narrowed. With the increment of α, cooperators tend to contribute more to groups
with higher cooperation frequency and from which they can get more benefits. To quantify the ability of parameter α to
facilitate and maintain cooperation, we examine the transition probability between the central C and D players (marked
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Fig. 2. The top panel depicts the evolution of cooperation of time courses for different values of α. Panels (b)–(d) show a series of distribution snapshots
of the cooperators (white) and the detectors (black) on a 100 × 100 square lattice. The simulations were obtained for r = 3.7, T = 1000 and four values of
α: (b) α = 0.2, (c) α = 0.4, (d) α = 0.6 and (e) α = 0.8.

Fig. 3. Left panel shows a typical pattern of the situation of the boundary players in a 5 × 5 square lattice with a periodic boundary condition. A red circle
indicates a defector, and a blue circle indicates a cooperator. The central C (marked in black) participates in 5 PGG groups {η, δ, γ , θ, ε}. Right panel is the
transition probability between the central C–D pair (marked in black) for different values of α. PDC denotes the probability of the central D transfer to C ,
and PCD denotes the probability of the central C transfer to D. The depicted result were obtained for r = 3.7. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

in black) for different values of α. The results presented in Fig. 3(b) indicate that with the increment of α, the cooperator is
more capable to resist the invasion of a defector.

Finally, we investigate the average payoff of boundary cooperators and defectors for different values of α. As shown in
Fig. 4, the average payoff of the boundary defectors is always larger than that of boundary cooperators. However, the payoff
difference between boundary cooperators and defectors decreases with the increase of α, indicating that the introduction of
the heterogeneous investment mechanism weakens the free-rider phenomenon of the boundary defectors and makes the
cooperation cluster more powerful against the invasion of defectors.
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Fig. 4. The average payoff of boundary C and D players (P̄C-bound and P̄D-bound) as a function of α for r = 3.7. The inset shows the average payoff gap between
boundaries C and D (P̄C-bound and P̄D-bound).

4. Conclusions

In summary, we investigate the evolution of cooperation in evolutionary public goods games by introducing a hetero-
geneous investment mechanism. In our model, the total investment in a group is mapped to the fraction of cooperators
the group contains, and subsequently adjusted by a single parameter α. In this way, cooperators are prone to share much
into the groups with higher cooperation levels and will obtain more benefits, encouraging a greater number of players to
be cooperators. Focusing on the effect of α on the cooperation level in the population, we give a typical toy model of the
boundary situation and quantitatively analyze the transfer frequency between different players. Our study may be helpful
for understanding the significant effect of investment heterogeneity on the evolutionary cooperation in the spatial public
goods game and related effects [53–55].
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