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h i g h l i g h t s

• The proper rhythm of cardiomyocyte’s constriction can be broken by the obstacles.
• Electrical patterns resulting from the wavefront-obstacle interaction are studied.
• The resulting interaction can give rise to reentry and spiral waves.
• The obstacle towards the direction of wave propagation causes spatial deformation.
• The continuity of successive plane waves, in turn, determines the spatial patterns.
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a b s t r a c t

The combination of the heart’s electrical and mechanical activities gives rise to complex
dynamics. The reentry, which is one of the most prominent types of heart arrhythmias, is
the result of an abnormal electrical activity in the cardiac tissue. These abnormalities are
often associated with local non-excitable or partially excitable areas in the cardiac tissue
called obstacles. In fact, the proper rhythm for the constriction of cardiomyocytes can be
broken by these abnormal obstacles. In this study, we investigate the electrical patterns
in a model of excitable media resulting from the interaction between the obstacle and the
wavefronts. We consider a slice of cardiac tissue with a rectangular obstacle in vertical and
horizontal orientation. Our research reveals that the interaction of the wavefront-obstacle
can give rise to reentry and spiral waves. It is also found that a wider section of the obstacle
towards the direction ofwave propagation causesmore deformation in the spatial patterns.
In addition, since it can postpone reentry, the continuity of the successive plane waves also
determines the resulting spatial patterns.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The heart is a vital organ responsible for pumping blood to the body. The heart ventricles support both normal rhythm
and ventricular fibrillation, and thus have bistability [1]. In the cardiac tissue, the cardiomyocytes conduct the electrical
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pulses generated from the sinoatrial (SA) node in a proper sequence. The electrical activity of the heart determines its
mechanical activity and leads to constriction of the heart’s muscle fibers. Therefore, the normal constriction of the heart
muscle relies on the normal rhythm of successive electrical excitations. This mechanism, in turn, makes the heart’s both
electrical and mechanical function complicated. On the other hand, the cardiac tissue is not homogeneous. It normally
contains some structures with the excitability properties that are different from other parts. These partially excitable or
non-excitable regions called obstacles are not detrimental in general, which the wavefront simply goes around and then
continues to pass [2]. However, the proper rhythm of the constriction of the cardiomyocytes can also be broken by the
obstacle or heterogeneity under some abnormal circumstances. These abnormalities arise from different mechanisms such
as inadequate blood supply to a local area of the tissue and myocardial infarction [3], tumor pressure on the blood vessels
or nerves, prolonged refractory period in a local region [3], a reduced excitability or even inexcitability of the medium [2],
the sodium channels blocked by some drug effects [3], etc. Furthermore, in the nervous system, the continuous pulses can
originate from anatomical heterogeneity, so that the normal signal propagation is stopped [4]. The studies show that cardiac
arrhythmias leading to ventricular fibrillation are often associated with abnormal obstacles or heterogeneities. In fact, the
obstacles play an essential role in initiation of reentry [5], which is the most prominent type of the heart arrhythmias [6].
Therefore, the wavefront-obstacle interaction is important to be studied. In addition, in [7], there is an experimental and
theoretical study on various types of reentrant rhythms in a monolayer cardiac tissue.

Patten formation in an excitable media is frequently investigated by mathematical modeling. In this regard, the effects
of different factors such as noise [8], the number of coupling channels [9], the connection type [10], and the time delay [11]
on the spatiotemporal order of the excitable media are examined. Cardiac electrical activity is often studied by recognition
of the propagating wave patterns in the cardiac tissue. The significance of these studies is well noticed while these patterns
arise from both local dynamics of the cells and also the impulse connection between them through the gap junctions. The
aim is to probe the normal and abnormal function of the heart from theoretical or experimental perspective. For example, the
cardiac electrical waves normally are originated from the SA node; however, some other pulse origins aside from the SA node
can emerge by the abnormalities. One type of these abnormal sources is the rotating spiral seed that generates expanding
circular waves [12]. Spiral waves are important to be studied while they substantially underlie the reentrant excitation in
the cardiac tissue [5]. When a spiral seed emerges in the cardiac tissue, it rotates with a higher frequency compared to the
natural frequency of the heart’s pacemaker. This makes the heartbeat rapid and irregular. The high-frequency arrhythmias
are often a reason of fibrillation and cardiac death. Furthermore, the situation getsworsewhen the spiral seed is unstable and
breaks up tomultiple spiral seeds, and each of themhas its own rotation frequency. This puts the heart in a turbulentmanner
and a desynchronized state called fibrillation [12,13]. Subsequently, the synchronized mechanical constriction of the heart
muscle stops, and thus the sufficient pumping blood is lost. The sudden heart death is often associated with heterogeneity
and obstacles [3], nevertheless, the connection between the cardiac arrhythmias, reduced excitability, and the obstacles is
still controversial.

Some studies confirm that, the obstacles in cardiac tissue stabilize the spiral wave dynamics [14–17], while other studies
argue that the obstacles can also act as destabilizers [18]. Olmos-Liceaga et al. focused on finding the minimum size
obstacle that permits generation of the spiral and scroll waves in an excitable media [19]. Zhang et al. studied the effect
of heterogeneity and its neighbor area on spiral waves using a cardiac model [20]. In their study a circular heterogeneity is
considered by blocking the potassium ion channel, and then the nearby rotating spiral seed is located. Lim et al. confirmed
that the spiral waves can become anchored in cardiac tissue due to the anatomic obstacles [21]. Athill et al. investigated the
meandering functional reentry, a mechanism of cardiac arrhythmia, in the atrium [22]. Cysyk and Tung studied the effect
of electric field on the obstacle, because the spiral waves are anchored by the obstacle, and this can lead to ventricular
fibrillation and sudden cardiac death [23].

In this paper, we investigate the reentry and the formation of spiral waves in the cardiac tissue in the presence of a
partially excitable obstacle. We use an enhanced version of the FHN model in which the magnetic flux is considered. This
is because, in the real neuron, the continuous exchange of the ions across the membrane causes a time-varying magnetic
field. The time-varying magnetic field also affects the membrane’s electrical activity. In our study, the induction current
affecting the neuron’s membrane potential and the inhibitory property of the neuron’s dynamics are the two factors that
we use to adjust the tissue’s excitability. After that, we consider a rectangular obstacle in the tissue in the presence of both
continuous and intermittent traveling plane waves to investigate the wavefront-obstacle interaction. The results show that
the reentrant excitation takes place near the obstacle’s borders and potentially leads to multi-spirals in that area. We place
both vertical and horizontal obstacles and generate successive wavefronts from the tissue’s left boundary. The aim is to
examine two different orientations of the obstacle toward the propagation direction. We found that a wider section of the
obstacle toward the wave propagation direction brings more deformation for the spatial patterns. Furthermore, aside from
the obstacle’s orientation, the strength and the continuity of the successive planewaves also determines the resulting spatial
patterns. In fact, it can postpone the reentry, and thus there can be less deformation in the normal spatial pattern. Our study
also confirms that the high excitability of the tissue causes the plane waves transfer easier in the tissue.

The rest of the paper is organized as follows:
In the next section, we represent the mathematical model that we use for our simulations. In Section 3 the detailed

explanation of our numerical study is given. Furthermore, the simulation results are shown in this section. Finally, the
conclusion of our work can be found in Section 4.
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Table 1
The parameters settings for Figs. 1–3.
Figures Parameters

Fig. 1a–e
ε = 0.02

k0 = −1

Fig. 1f–j
ε = 0.002

k0 = −1

Fig. 2a–e
ε = 0.02

k0 = −0.5

Fig. 2f–j
ε = 0.002

k0 = −0.5

Fig. 3a–e
ε = 0.02

k0 = 0.5

Fig. 3f–j
ε = 0.002

k0 = 0.5

Fig. 1. Intermittent and continuous plane waves, traveling across the excitable tissue; for (a–e) ε = 0.02 and k0 = −1, (f–j) ε = 0.002 and k0 = −1. For
(a, f) t = 10 time units, (b, g) t = 100 time units, (c, h) t = 250 time units, (d, i) t = 400 time units, (e, j) t = 500 time units.

Fig. 2. Intermittent and continuous plane waves, traveling across the excitable tissue; for (a–e) ε = 0.02 and k0 = −0.5, (f–j) ε = 0.002 and k0 = −0.5.
For (a, f) t = 10 time units, (b, g) t = 100 time units, (c, h) t = 250 time units, (d, i) t = 400 time units, (e, j) t = 500 time units.
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Fig. 3. Continuous plane waves, traveling across the excitable tissue; for (a–e) ε = 0.02 and k0 = 0.5, (f–j) ε = 0.002 and k0 = 0.5. For (a, f) t = 10 time
units, (b, g) t = 100 time units, (c, h) t = 250 time units, (d, i) t = 400 time units, (e, j) t = 500 time units.

Fig. 4. Coordination of the rectangular obstacle in the excitable tissue. (a) vertical obstacle, (b) horizontal obstacle.

2. Mathematical model of the tissue

In the context of mathematical neuronal models, some models are presented including the ionic models like Hodgkin–
Huxley (HH) model [24] and Noble model [25], and the simplified models like Karma model [26], Fitzhugh–Nagumo (FHN)
model [27], Barkley model [28], Hindmarsh—Rose model [29], etc. Mathematical modeling of the cardiac tissue is a valuable
tool that has grown significantly since 1962 when Denis Noble modified the equations formulated by Hodgkin–Huxley in
1952. The Noble model is the first mathematical model of cardiac action potentials and pacemaker rhythms [25]. From one
perspective, given the nonlinearity and the complexity of the heart, the simplified models are more noticed to investigate
the qualitative characteristics of the heart’s dynamics. The advantage of this attitude is that these models permit analytical
analysis [30]. In addition, although being simplified, thesemodels have been successful to reproduce some generic properties
of such complex demonstrations [31]. The FHN model, which is derived as the simplification of the HH equations, can
reproduce generic characteristics of the neurons and cardiac fibers. This model includes excitation threshold and refractory
period. Some modified versions of the FHN model are also presented. For example, Aliev and Panfilov [30] proposed a two-
variable model describing the fast and the slow processes. The model is described by the following equations:

du
dt

= Du∇
2u − ku (u − a) (u − 1) − uv

dv
dt

=

(
ε +

vµ1

u + µ2

)
(−v − ku(u − a − 1))

(1)

where u (fast variable) and v (slow variable) are the transmembrane potential and the ion current, respectively. The right-
hand side of the first equation of Eq. (1) is similar to the original FHN model [30]. Parameter a = 0.15 is the threshold for
excitation and k = 8 is dependent on the media. The nonlinear term −ku (u − a) (u − 1) − uv is the total transmembrane
current per unit area [32]. The Laplacian operator in two-dimensional space is ∇

2
= ∂xx + ∂yy. Parameter Du = 1 is the
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Fig. 5. Spatiotemporal patterns from the wavefront-obstacle interaction, for ε = 0.02, k0 = −1, in the presence of (a–h) the vertical obstacle, and (i–p)
the horizontal obstacle. For (a, i) t = 10 time units, (b, j) t = 150 time units, (c, k) t = 250 time units, (d, l) t = 350 time units, (e, m) t = 450 time units,
(f, n) t = 600 time units, (g, o) t = 700 time units, (h, p) t = 800 time units.

diffusion coefficient. The parameters µ1 = 0.2 and µ2 = 0.3 are fixed, and the parameter ε is often used to describe the
excitability of the media.

Although this model is well capable of reproducing different generic behaviors of the neuron, some effective factors are
missed. For instance, the continuous exchange of the ions across the membrane brings a time-varying electrical field, and
thus a time-varying magnetic field. This varying magnetic force mutually affects the electrical activity of the ions. There
is also some evidence that the electromagnetic field changes the gap junction communication [33]. Based on these facts,
in this study, we use the mathematical model in which a magnetic flux variable is considered [32]. This additive variable
describes the magnetic flux induced by the distribution of the ion concentration. The enhanced three-variable model is as
follows:

du
dt

= Du∇
2u − ku (u − a) (u − 1) − uv + k0ρ(φ)u

dv
dt

=

(
ε +

vµ1

u + µ2

)
(−v − ku(u − a − 1))

dφ
dt

= k1u − k2φ

ρ (φ) =
dq(φ)
dφ

= α + 3βφ2

(2)

where the additive variable φ describes the magnetic flux across the membrane. The term k0ρ(φ)u is the induction current
induced by electromagnetic induction [32] and the parameter k0 modulates the magnetic induction on the membrane
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Fig. 6. Spatiotemporal patterns from the wavefront-obstacle interaction, for ε = 0.002, k0 = −1, in the presence of (a–h) the vertical obstacle, and (i–p)
the horizontal obstacle. For (a, i) t = 10 time units, (b, j) t = 150 time units, (c, k) t = 250 time units, (d, l) t = 350 time units, (e, m) t = 450 time units,
(f, n) t = 600 time units, (g, o) t = 700 time units, (h, p) t = 800 time units.

potential. The parameters k1 = 0.2 and k2 = 1 adjust the electromagnetic effect induced by the ion exchange in the cell and
the saturation of the magnetic flux, respectively.

In this study we design a lattice consisting of 101 × 101 neurons, as a model of the cardiac tissue. The local dynamics of
each neuron is governed by Eq. (2). Furthermore, we consider the 4-neighbor connection for all the neurons of the lattice
(see Eq. (3)). We consider the excitable media using the following equations:

duij

dt
= −kuij

(
uij − a

) (
uij − 1

)
− uijvij + k0ρ

(
φij

)
uij + Du

(
ui+1j + ui−1j + uij+1 + uij−1 − 4uij

)
+ f δiηδjζ

dvij

dt
=

(
ε +

vijµ1

uij + µ2

)
(−vij − kuij(uij − a − 1))

dφij

dt
= k1uij − k2φij

ρ
(
φij

)
= α + 3βφ2

ij

(3)

where ij shows the location of each neuron in the lattice ((1 ≤ i ≤ 101 and 1 ≤ j ≤ 101; i, j ∈ z). δiη = 1 for i = η and
δiη = 0 for i ̸= η, δjζ = 1 for j = ζ and δjζ = 0 for j ̸= ζ . f = A cos(ωt) is a periodic force applying to the tissue’s left
boundary by η = 1: 101 and ζ = 1. The parameters A = 0.6 and ω = 0.2 are fixed.
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3. Numerical simulation and discussion

In this section, the interaction of wavefront-obstacle is investigated by the numerical method. We consider a square
network of 101×101 neurons as an excitable tissue. We apply a periodic force on the boundary of the tissue to generate
successive wavefronts, and then we put an obstacle toward the path of wave propagation to see their interaction. On the
other hand, the excitability of the tissue plays a decisive role for the traveling wavefronts to continue or stop. It means
that the excitability of the tissue can hinder the traveling plane waves in the tissue, even in the presence of periodic force
on the boundary. Given this, three cases can happen: (1) the excitability of the tissue is high enough to support the wave
propagation, so that the successive planewaves travel across the tissue during thewhole time span (Fig. 1f–j, Fig. 2f–j, Fig. 3);
(2) the excitability of the tissue is not very high, so that some traveling planewaves take place but not continuously (Fig. 1a–e,
Fig. 2a–e); (3) the tissue does not support wave propagation due to its low excitability. It is important to consider the two
states of continuous and intermittent propagation of the plane waves. Because as soon as a spiral seed emerges in the tissue,
it can get to the power if there are no continuous plane waves. It means that the continuous propagation of the plane waves
can impede the growth of the spiral wave in the tissue. The Figs. 1–3 show the results of different levels of excitability, made
by different adjustments of the two parameters ε and k0. In the FHNmodel, as mentioned earlier, the first variable is the fast
variable, which excites the neuron. Given Eq. (3), the excitatory variable can increase by intensifying the induction current,
which is adjustable by the parameter k0. On the other hand, the second variable of the FHNmodel is the inhibitory variable.
In this study, we use the parameter ε to vary the inhibitory strength. In fact, the tissue’s excitability decreases by increasing
the parameter ε. We aim to represent different possible patterns arise from the interaction between the planewaves and the
obstacle. First, we modulate the tissue’s excitability by setting the parameters ε and k0, and then we show howmuch it can
support the plane waves propagation for each case (Figs. 1–3). Note that no obstacle is considered in these figures. Second,
we put the obstacle in the central area of the tissue and compare the results. The parameters setting for these figures are
given in Table 1.

Now let us consider a slice of cardiac tissue with an obstacle. We place the obstacle by making different excitability
properties in a specific area with Neumann boundary conditions at its edges. The mechanism of the initiation of reentry
and thus the spatial perturbation in the wave pattern caused by the heterogeneity is well documented in the literature.
However, the orientation of the obstacle is also important. Therefore, we examine the rectangular obstacle in both horizontal
and vertical orientation, and generate the plane waves from the tissue’s left boundary for each case. In this way, we will see
which orientation disturbs the propagation patternmore significantly. Fig. 4 shows the coordination of both the vertical and
the horizontal obstacle thatwe consider in the presentwork. Thewavefront-obstacle interaction is shown in some snapshots
over the time to track the development of the resulting spatiotemporal patterns. We found that the initiation of reentry and
formation of the spiralwaves are highly probable near the boundary of the obstacle.Moreover, the planewaves can greatly be
broken depending on the obstacle’s orientation. In addition, the continuity of the traveling wavefronts, which is dependent
on the tissues excitability, in turn, influences the final spatial pattern. In this regard, we examine both horizontal and vertical
orientation of the obstacle for each level of the tissue’s excitability.

In Fig. 5, the parameters are set as ε = 0.02 and k0 = −1. Fig. 5 shows how the plane waves generated from the left
boundary undergo the changes that lead to a completely different pattern fromwhat can be seen in Fig. 1a–e. In Fig. 1a–e, the
traveling plane waves exist only in a limited time span and after that, there is no traveling plane wave (Fig. 1d,e). However,
Fig. 5a–h shows that the propagation does not stop affected by the vertical obstacle. The obstacle makes a proper condition
for the initiation of reentry, and then the spiralwaves emerge in the tissue. Furthermore, Fig. 5i–p shows the resulting pattern
for a horizontal obstacle in the tissue during the time. In this case, spiral seeds have the less opportunity to emerge, so that
the tissue’s electrical activity becomes synchronized after a limited time (Fig. 5m–p).

As mentioned earlier, the continuity of the successive plane waves is also determinative for the resulting spatial pattern
and should be investigated. To this end, we decrease the value of parameter ε, from ε = 0.02 to ε = 0.002, so that the
tissue becomes more excitable, and thus it supports continuous traveling plane waves. The related successive plane waves
in absence of the obstacle are shown in Fig. 1f–j. Having the tissue with this level of excitability, we place the obstacle in the
tissue to see the wavefront-obstacle interaction. The upper snapshots of Fig. 6 (Fig. 6a–h) represent the result for vertical
obstacle over the time, while the lower snapshots (Fig. 6i–p) display the results for the horizontal obstacle. It is found that
the plane waves can go around the horizontal obstacle in a way that leads to less spatial perturbation in the final pattern
(compare Fig. 6h and p).

Moreover, the interaction of the plane waves shown in Fig. 2a–e with the obstacle is displayed in Fig. 7, where ε = 0.02
and k0 = −0.5. Fig. 7a–h shows that, with this excitability level, the effect of vertical obstacle gives rise to the emergence
of spiral wave inside the obstacle. The resulting spiral wave is trammeled by the obstacle’s borders and cannot rule it out.
Actually, it continues to rotate as long as possible, while there is no other force to suppress it. Thus, the tissue is prevented
from the synchronized electrical activity. In contrast, the tissue gets synchronized by placing a horizontal obstacle in the
tissue (see Fig. 7n–p). Actually, the horizontal obstacle leads to formation of some spiral seeds at the obstacle’s edges.
However, the seeds do not maintain in the tissue because of the rectangle’s orientation relative to the wave propagation
direction.

After that, we investigate this case for the successive wavefronts shown in Fig. 2f–j, in which the plane waves are
continuously propagated. To this end, we place the obstacle in the tissue while reducing the parameter ε from ε = 0.02 to
ε = 0.002 (see Fig. 8). The snapshots of Fig. 8a–h, in which the vertical obstacle is considered, confirm that the formation of
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Fig. 7. Spatiotemporal patterns from the wavefront-obstacle interaction, for ε = 0.02, k0 = −0.5, in the presence of (a–h) the vertical obstacle, and (i–p)
the horizontal obstacle. For (a, i) t = 10 time units, (b, j) t = 150 time units, (c, k) t = 250 time units, (d, l) t = 350 time units, (e, m) t = 450 time units,
(f, n) t = 600 time units, (g, o) t = 700 time units, (h, p) t = 800 time units.

perfect spiralwave suffers fromconsecutivewavefronts. Therefore, some imperfect spirals co-existwith the broken traveling
plane waves. In fact, each segment of the broken plane waves starts bending from its ends that gives rise to the spiral seed.
Furthermore, this co-existence also takes place when we replace the vertical obstacle with a horizontal one (Fig. 8i–p).
However, the difference between the results of Fig. 8a–h and Fig. 8i–p is in the amount of spatial perturbation in the tissue.
Actually, the point is that, a wider section of the obstacle is placed toward the wave propagation direction by putting the
vertical obstacle. Therefore, the spiral arm can become longer since the ends of each segment of the broken wavefront’s are
more distant from each other. Consequently, the vertical obstacle brings more deformation in the spatial pattern than the
horizontal one.

For the last step, we seek to discover the resulting spatiotemporal pattern in a highly excitable tissue caused by both the
intensified induction current and the reduced parameter ε. As is illustrated in Fig. 3, the tissue well conducts the wavefronts
by setting k0 = 0.5, so that all the generated pulses from the tissue’s left boundary can reach out the other side. Regarding
this state of the tissue, we place the obstacle in the tissue to see the resulting pattern (Fig. 9). By putting the vertical obstacle
(Fig. 9a–h), even though the ends of the broken plane waves are distant from each other, the resulting spiral waves cannot
grow perfectly due to the high spatial frequency of the successive plane waves. That is to say, formation of each spiral
wave does not complete since its spiral arm immediately meets the subsequent wavefront and gets suppressed. In fact, the
frequent plane waves give rise to multiple spirals by reaching the obstacle. These multiple spiral seeds rotate with different
frequencies and get broken. In addition, the resulting spatial perturbation expands over the time (Fig. 9e–h). However, the
same as before, this spatial perturbation caused by the horizontal obstacle is less than the vertical one (Fig. 9i–p).

As explained earlier, the other tool to increase the tissue’s excitability is to reduce the inhibitory effect. In this regard,
we set ε = 0.002 for all the neurons in the lattice. By this adjustment, the frequent wavefronts become stronger and the
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Fig. 8. Spatiotemporal patterns from the wavefront-obstacle interaction, for ε = 0.002, k0 = −0.5, in the presence of (a–h) the vertical obstacle, and (i–p)
the horizontal obstacle. For (a, i) t = 10 time units, (b, j) t = 150 time units, (c, k) t = 250 time units, (d, l) t = 350 time units, (e, m) t = 450 time units,
(f, n) t = 600 time units, (g, o) t = 700 time units, (h, p) t = 800 time units.

two ends of the broken plane waves perfectly follow the obstacle’s borders (Fig. 10). Moreover, the curved stripe pattern,
which is primarily organized from the initial plane waves, stays for a longer time when the vertical obstacle is considered
(Fig. 10a–h). In addition, his particular pattern co-exists with some slight imperfect spiral waves. Furthermore, we also
surveyed the changes of wave pattern under the effect of horizontal obstacle (Fig. 10i–p). It is found that, the spatial pattern
is more robust in the presence of the horizontal obstacle when the tissue is highly excitable. Here the internal ends of the
two segments of the broken plane waves perfectly follow the horizontal borders of the obstacle. This interaction between
the obstacle and the plane waves postpones the reentry and the spiral waves.

4. Conclusion

In this work, a study of the initiation of reentry and the formation of spiral waves in a model of the cardiac tissue with an
obstacle was represented. We used a modified FHN model in which the magnetic flux was considered. Because in the real
neuron, the continuous exchange of the ions across the membrane causes a time-varying magnetic field, and this magnetic
field mutually affects the membrane’s electrical activity. Therefore, the new FHN model would be more reliable, while it
holds an additive variable of magnetic flux and also more bifurcation parameters.

On the other hand, the induction current affecting the neuron’s membrane potential and the inhibitory property of
the neuron’s dynamics are the two factors that we used in our work to adjust the tissue’s excitability. In fact, the tissue’s
excitability plays a decisive role in propagation of the generated wavefronts. In this context, three cases could happen: (1)
the excitability of the tissue is high enough to support thewave propagation, so that the successive planewaves travel across
the tissue, continuously; (2) the excitability of the tissue is not very high, so that some traveling plane waves take place but
not continuously; (3) the tissue does not support wave propagation due to its low excitability. Given this, to investigate
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Fig. 9. Spatiotemporal patterns from the wavefront-obstacle interaction, for ε = 0.02, k0 = 0.5, in the presence of (a–h) the vertical obstacle, and (i–p)
the horizontal obstacle. For (a, i) t = 10 time units, (b, j) t = 150 time units, (c, k) t = 250 time units, (d, l) t = 350 time units, (e, m) t = 450 time units,
(f, n) t = 600 time units, (g, o) t = 700 time units, (h, p) t = 800 time units.

the wavefront-obstacle interaction, we placed a rectangular obstacle in the tissue in the presence of both continuous and
intermittent traveling waves. Our investigation reveals that the interaction of the wavefront-obstacle gives rise to reentry,
and thus to the emergence of spiral wave. The results showed that the reentrant excitation took place near the obstacle’s
borders and potentially led to multi-spirals in that area. The multi-spirals co-existed with the successive plane waves that
resulted in a gradually expanding perturbation area. In addition, the obstacle could also hold a perfect spiral wave under
specific circumstances. This was while the tissue became synchronized in its normal state, in which there was no obstacle.
We picked the two vertical and horizontal obstacles to see the effect of obstacle’s orientation relative to the propagation
direction on the resulting patterns. It is found that a wider section of the obstacle toward the wave propagation direction
brings more deformation for the spatial pattern. Confirming this, a horizontal obstacle caused less perturbation, so that the
wavefronts generated fromone side of the tissue could reach out the opposite sidewith less deformation. Furthermore, aside
from the obstacle’s orientation, the strength and the continuity of the successive plane waves also determined the resulting
spatial pattern. It actually could postpone the reentry, which in turn, caused less deformation in the normal spatial pattern.
The high excitability of the tissue causes the plane waves transfer easier in the tissue. These plane waves could follow the
obstacle’s borders after getting broken, and the striped spatial pattern was more robust against spatial deformation.
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Fig. 10. Spatiotemporal patterns from the wavefront-obstacle interaction, for ε = 0.002, k0 = 0.5, in the presence of (a–h) the vertical obstacle, and (i–p)
the horizontal obstacle. For (a, i) t = 10 time units, (b, j) t = 150 time units, (c, k) t = 250 time units, (d, l) t = 350 time units, (e, m) t = 450 time units,
(f, n) t = 600 time units, (g, o) t = 700 time units, (h, p) t = 800 time units.
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