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Abstract
Oscillations of cytosolic Ca2+ are very important for cellular signalling in excitable and
non-excitable cells. The information of various extracellular stimuli is encoded into oscillating
patterns of Ca2+ that subsequently lead to the activation of different Ca2+-sensitive target
proteins in the cell. The question remains, however, why this information is transmitted by
means of an oscillating rather than a constant signal. Here we show that, in fact, Ca2+

oscillations can achieve a better activation of target proteins than a comparable constant signal
with the same amount of Ca2+ used. For this we use Jensen’s inequality that describes the
relation between the function value of the average of a set of argument values and the average
of the function values of the arguments from that set. We analyse the role of the cooperativity
of the binding of Ca2+ and of zero-order ultrasensitivity, which are two properties that are
often observed in experiments on the activation of Ca2+-sensitive target proteins. Our results
apply to arbitrary oscillation shapes and a very general decoding model, thus generalizing the
observations of several previous studies. We compare our results with data from experimental
studies investigating the activation of nuclear factor of activated T cells (NFAT) and Ras by
oscillatory and constant signals. Although we are restricted to specific approximations due to
the lack of detailed kinetic data, we find good qualitative agreement with our theoretical
predictions.

S Online supplementary data available from stacks.iop.org/PhysBio/7/036009/mmedia
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1. Introduction

The role of intracellular Ca2+ oscillations in signal
transduction of non-excitable cells, as well as the underlying
mechanisms leading to their generation and subsequent
evaluation, has been extensively studied experimentally
[1–5] and theoretically [6–11]. These oscillations occur due to
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an exchange of Ca2+ between the cytosol and the endoplasmic
reticulum (ER) or other intracellular stores in several types
of non-excitable cells such as oocytes, hepatocytes and
astrocytes.

The question which physiological advantages Ca2+

oscillations have in comparison to adjustable stationary Ca2+

levels has often been asked [8, 12–16]. One proposed
advantage is the lowering of the average cytosolic Ca2+

level by oscillations, since higher concentrations of Ca2+ are
detrimental for the cell due to precipitation of Ca2+ salts or
the risk of apoptosis due to Ca2+ overloaded mitochondria
[17, 18]. This hypothesis of concentration lowering has been
confirmed for a specific class of Ca2+ models having a net flux
of Ca2+ across the cell membrane with a constant Ca2+ influx
and an efflux that only depends on cytosolic Ca2+ [19]. It was
shown that, when the efflux follows a convex kinetics over the
amplitude range of the oscillations, the average Ca2+ level is
lower or equal to the comparable steady-state level, whereas
this is reversed in the case of a concave efflux kinetics.

Due to the observation of unchanged or even increased
average Ca2+ levels, the question remains how this affects
Ca2+-dependent proteins. Prominent examples from this class
of proteins are: protein kinase C [20], calcineurin [21],
calmodulin [22], and proteins affected by calmodulin such
as Ca2+/calmodulin-dependent protein kinase II (CaMKII)
[23], myosin light-chain kinase [24] and phosphorylase
b kinase [25]. These proteins are able to decode the
information contained in an oscillating Ca2+ signal. This was
shown experimentally for the CaMKII [26] and subsequently
analysed in a theoretical study [27]. The information
is then relayed to other target proteins, for example by
phosphorylation cascades in the case of Ras signalling [28].
Theoretical studies of the decoding of Ca2+ signals by
Ca2+-sensitive proteins have accompanied these experimental
findings [29–33].

Moreover, the advantage of an oscillating compared to
a constant signal for the activation of target proteins has
been analysed in a number of analytical [33], numerical
[15, 34–36] and experimental [28, 37–39] studies. For
example, experimentally superimposed oscillations [28, 37–
39] or, in theoretical studies, artificial (square-shaped) [33]
as well as oscillating signals generated by Ca2+-oscillation
models [15, 34–36] were used. Other potential advantages of
oscillations have also been discussed cf [8], such as higher
robustness against perturbations [40], prevention of receptor
desensitization [12] and the possibility to selectively activate
target proteins [32, 41, 42]. Here we are interested in
elucidating the advantages of oscillations over a constant
signal and the role of nonlinear kinetics played therein.
Specifically, we focus on the activation of target proteins and
study this analytically for arbitrary signals and a generalized
decoding model by using Jensen’s inequality [43, 44]. The
latter provides a well-suited theoretical background in that it
describes the relation between the function value of the average
and the average of the function values. Jensen’s inequality has
been used earlier to study other biological questions, such
as the importance of environmental variation in ecology [45]
or optimal body temperature [46]. An accurate disposition
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Figure 1. Illustration of Jensen’s inequality by using a set Z of just
two values, Z1 and Z2. f (〈Z〉) is the function value of the averaged
argument and 〈f (Z)〉 is the average of the two function values.
(——) convex function f (Z), (- - - -) line connecting the function
values of Z1 and Z2 to visualize the average of these function values.

on Jensen’s inequality will be given in the following section,
whereas in sections 3 and 4 we present the results and discuss
their implications, respectively.

2. Methods

2.1. Jensen’s inequality

Jensen’s inequality (published in French) [43] is named after
the Danish mathematician Johan Jensen. It says that a convex
function f has the property that the function value of the
average (of two or more) argument values Z1, Z2, . . . forming
a set Z is not greater than the average of the function values
f (Z1), f (Z2), . . . (figure 1 and cf [44]).

For the analysis of Ca2+ oscillations the case where Z is
a continuous interval is relevant. The variable Z is then the
cytosolic Ca2+ concentration, which is a periodic function over
time. For obvious reasons, we consider the average over one
period of the oscillation, which can be expressed as an integral
over time divided by the oscillation period T:

f

(
1

T

∫
T

Z(t) dt

)
� 1

T

∫
T

f (Z(t)) dt, (1)

with f being convex over an interval Z between minimum and
maximum values (amplitudes) of the oscillation. Using the
short notation for the average 〈〉 this can be written as

f (〈Z〉) � 〈f (Z)〉. (2)

For strictly convex functions the inequality is strict. For
concave functions, the opposite holds, with an analogous
constraint for strictly concave functions.

The prerequisite of convexity for Jensen’s inequality to
be true is that the second derivative of f (Z) is non-negative,

2



Phys. Biol. 7 (2010) 036009 C Bodenstein et al

X
in

k
off

 f
2
(X)

X

Z(t)

k
on

 f
1
(Z,X

in
)

Figure 2. Target protein model: Z, X and Xin are the concentrations
of Ca2+, active and inactive target protein, respectively. kon and koff

are the rate constants of activation and deactivation.

f ′′(Z) � 0, for all Z in an interval comprising Z. The binding
kinetics of Ca2+ to proteins are indeed convex functions, at
least partly. Jensen’s inequality allows us to compare the
average protein activation with the activation achieved by a
constant signal.

2.2. Model of target protein activation

Here we assume that protein activation by Ca2+ spikes can
be described by differential equations. We consider an
arbitrary Ca2+ signal Z(t) � 0 with a period T and amplitude
range [Z1, Z2]. Throughout the study, we assume that the
sequestration of Ca2+ by the Ca2+-binding proteins is so small
that it can be neglected in the Ca2+ balance [41]. The time
course of the activated form of a target protein, X, can then be
written as

dX

dt
= F(Z,X) = konf1(Z,Xtot − X) − kofff2(X) (3)

= kon(f1(Z,Xtot − X) − KDf2(X)), (4)

where we have used the conservation relation Xtot = X + Xin

to express the amount of the inactive protein Xin (figure 2).
Moreover, we have introduced the dissociation constant KD =
koff/kon > 0.

The first term describes the Ca2+-dependent activation
of X with the maximal turnover rate kon, while the second
term describes the Ca2+-independent inactivation of X with the
maximal rate koff . Such a model generalizes a wide number
of approaches used to model the decoding of Ca2+ oscillations
[15, 29, 30, 32–34, 36, 42]. We can assume that F(Z, X) is
strictly monotonic increasing in Z > 0 because Ca2+ activates
the protein. Moreover, we assume it to be strictly monotonic
decreasing in X because of the decay of the activated form
and the effect of the conservation relation in the activation
process. In particular, we can choose the rate laws such
that f1 � 0 is strictly monotonic increasing in Z > 0 and
Xtot − X, and f2 � 0 is strictly monotonic increasing in X.
We can derive some results for such a very general model.
Later, we concentrate on functions f1 that are separable in
their arguments:

f1(Z,Xtot − X) = v(Z)f ∗
1 (Xtot − X). (5)

Usually Ca2+ is cooperatively bound to Ca2+-activated
proteins. This gives rise to a nonlinear decoding of Ca2+

oscillations. For example, up to four Ca2+ ions bind to

calmodulin, which, in turn, activates CaMKII cf [22]. The
term v(Z) � 0 describes the Ca2+-dependent activation by an
arbitrary activation function, which could, for example, be a
simple mass-action kinetics with molecularity n [42]:

v(Z) = Zn. (6)

It could also be a Hill kinetics in Z [30]:

v(Z) = Zn

(KS)n + Zn
, (7)

where KS and n are the half-saturation constant and Hill
coefficient, respectively. Note that we have omitted the
maximal velocities since they are already incorporated in kon.
Additionally, f ∗

1 denotes the binding kinetics of the target
protein X to a Ca2+-dependent activator. The functions f ∗

1 and
f2 could be linear kinetics if (3) models the Ca2+-dependent
protein itself or Michaelis–Menten kinetics if X is activated in
a phosphorylation cycle by a Ca2+-dependent kinase. Thus,
such a modelling comprises different mechanisms proposed
for the decoding of Ca2+ signals [29, 32, 33]. Examples of
models that do not fulfil the separability condition (5) are the
ones in [15, 34].

3. Results

3.1. Time courses of the target protein

The steady state Xss for the case of constant Ca2+ is given by
solving

dX

dt
= F(Z,Xss(Z)) = 0. (8)

Due to ∂F/∂X < 0 for all Z ∈ [Z1, Z2] and X ∈
[0, Xtot], which we assumed in the definition of our model,
the implicit function theorem assures that there exists a
unique steady-state solution Xss(Z) to (8) [47]. Moreover,
since the derivative ∂F (Z,X)/∂X is negative at the steady
state, this state is asymptotically stable in the case of
constant Ca2+. In the supporting text, section 2 (available
at stacks.iop.org/PhysBio/7/036009/mmedia), we show that
this together with ∂F/∂Z > 0 implies that Xss(Z) is strictly
monotonic increasing in Z > 0 and, in the separable case,
Xss(v(Z)) is a strictly monotonic increasing function in v > 0.
Therefore, we can solve 8 in that case:

v(Z)

KD
= f2(Xss)

f ∗
1 (Xtot − Xss)

= h(Xss), (9)

h−1

(
v(Z)

KD

)
= Xss(v(Z)). (10)

In the supporting text, section 1 (available at
stacks.iop.org/PhysBio/7/036009/mmedia), we show by a
Poincaré map that the system given in (3) has a unique
oscillating solution when forced by an oscillating Ca2+ signal
Z(t) when ∂F/∂X < 0. This solution also has a period T
and the periodic phase will be reached after a certain transient,
which is decreasing with kon (cf figure 3).

We are interested whether the oscillations can lead to a
stronger activation of the target protein than a comparable
constant signal. Here, as a comparable signal, we define a
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Figure 3. Time course of the underlying Ca2+ signal concentration
Z(t) ( . . . . . . , black) and of the active target protein concentration
X(t) for different activation constants (kon = 100: ——, red;
kon = 4: - - - -, blue). Here the Ca2+ signal is defined as
square-shaped spikes in (25) with period T = 2, Tp = 0.2,
Z1 = 0.08 and Z2 = 0.8. The activation kinetics is given by
v(Z) = Z4, the total protein concentration is Xtot = 1 and
KD = 0.01. The functions f ∗

1 and f2 are described by
Michaelis–Menten kinetics with the Michaelis constant 0.1.

constant signal with the same average of Ca2+ over one period
as the oscillating signal:

Z̄ = 1

T

∫ T

0
Z(t) dt = 〈Z〉. (11)

Given this constant input the activated target protein reaches
the steady state Xss(v(Z̄)) given in (10) and thus we can
calculate the average in one period by

〈XZ̄〉 = Xss(v(〈Z〉)). (12)

We will focus here on the case of a separable function
f1 as given in (5), while the derivation for general functions
can be found in the supporting text, section 3 (available at
stacks.iop.org/PhysBio/7/036009/mmedia). To compute the
average of activated protein given an oscillating input we
integrate (3) with f1 separable over one period T:

X(T ) − X(0) =
∫ T

0
kon(v(Z)f ∗

1 (Xtot − X) − KDf2(X)) dt.

(13)

Now using the fact that X(t +T ) = X(t) in the periodic phase,
we obtain

0 =
∫ T

0
(v(Z)f ∗

1 (Xtot − X) − KDf2(X)) dt. (14)

This condition must be fulfilled by any periodic solution X(t)

of (3).

3.2. Comparison of constant and oscillating signals in the
limit cases of slow and fast binding kinetics

It is difficult to derive a solution X(t) fulfilling this condition
in the general case. However, we can find two solutions for the

two limit cases of a very high activation constant (kon → ∞)
and a very low activation constant (kon very small but non-
zero).

We start with the first case (kon → ∞) in which the level
of activated target protein X(t) reacts very fast to a change
in the Ca2+ concentration Z(t) and reaches the corresponding
steady state Xss(v(Z(t))) nearly immediately. This solution
fulfils the condition in (14) since for X = Xss the term in the
integral becomes 0 due to (8). The average is given by

〈Xosc〉 = 1

T

∫ T

0
Xss(v(Z(t))) dt = 〈Xss(v(Z))〉, (15)

with the subscript osc referring to the case where X oscillates.
In the second case of a very low activation constant (kon

very small but non-zero), the target protein responds only
marginally to a change of Ca2+ and slowly integrates the input
signal over time. After a certain transient phase, this leads
to an oscillating output with small amplitude in the periodic
phase. Thus, as an approximation, we can set X(t) = Xint in
(14) with the subscript int referring to this ‘integration case’:

0 =
∫ T

0
(v(Z)f ∗

1 (Xtot − Xint) − KDf2(Xint)) dt. (16)

After dividing by T, rearranging the terms and taking the
inverse as in (10) we obtain an expression for Xint:

Xint = h−1

( 〈v(Z)〉
KD

)
= Xss(〈v(Z)〉). (17)

Thus, for the integration case we derive the following average:

〈Xint〉 = Xss(〈v(Z)〉). (18)

To analyse whether and under which conditions
oscillations lead to a stronger activation of target proteins,
we compare the expression for the average of activated target
protein in the case of a constant signal in (12) with the above
two limit cases. Note the different locations of the brackets
indicating the averaging in equations (12), (15) and (18) for
the different cases. This implies that for this comparison we
can utilize Jensen’s inequality (cf section 2.1).

To compare 〈Xosc〉 and 〈Xint〉, we can distinguish two
cases depending on the behaviour of Xss in v. Case 1: Xss is
a convex function in v over the interval [v(Z1), v(Z2)]. Then
we obtain 〈Xint〉 � 〈Xosc〉. Case 2: Xss(v) is concave. Then
the opposite holds: 〈Xosc〉 � 〈Xint〉.

In case 1, it suffices to analyse under which conditions the
following holds:

〈XZ̄〉 � 〈Xint〉, (19)

which is equivalent to

Xss(v(〈Z〉)) � Xss(〈v(Z)〉). (20)

From Jensen’s inequality we deduce that the convexity of
v in Z over the amplitude range [Z1, Z2] is a necessary
condition for oscillations to be advantageous. It is clear that
the two inequalities 〈XZ̄〉 � 〈Xint〉 � 〈Xosc〉 hold, because the
composition of two convex, monotonic increasing functions
(Xss and v) is again a convex function.

In case 2 we need to analyse when

〈XZ̄〉 � 〈Xosc〉, (21)
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which is equivalent to

Xss(v(〈Z〉)) � 〈Xss(v(Z))〉. (22)

This inequality is fulfilled when Xss is convex in Z over
the amplitude range of the signal. Unlike above, it is not
immediately clear whether the two inequalities Xss(v(〈Z〉)) �
〈Xss(v(Z))〉 � Xss(〈v(Z)〉) hold because now Xss is concave
in v. Thus, to achieve the convexity of Xss in Z we need
v′′(Z) � 0 to compensate at least in part for the concavity of
Xss in v. So v needs to be convex in case 2 as well. Therefore,
a necessary condition for a better activation of target proteins
by an oscillating signal than by a constant signal of the same
average is in both cases a convex dependence of the protein
activation on the Ca2+ level. This is fulfilled, for example,
for the mass-action kinetics with molecularity n in (6) for all
values of substrate concentrations and for the Hill kinetics with
cooperativity n in (7) below the inflection point.

For the non-separable case we derive in
the supporting text, section 3 (available at
stacks.iop.org/PhysBio/7/036009/mmedia), that in the
integration case (small kon) a necessary condition is the
convexity of the function F over Z to fulfil the inequality

F(〈Z〉, X) � 〈F(Z,X)〉, (23)

which guarantees 〈XZ̄〉 � 〈Xint〉. This is a generalization of
the condition for separable functions f1 we derived above.

In the oscillatory case a necessary condition is the
convexity of the steady-state response Xss over Z to fulfil the
inequality

Xss(〈Z〉) � 〈Xss(Z)〉, (24)

which guarantees 〈XZ̄〉 � 〈Xosc〉. This is the same condition
derived as above for separable functions f1. However, in
contrast to the separable case, it is not easy to analyse
under which conditions the function Xss(Z) is convex. The
analysis of sufficient conditions for convexity shows that the
convexity of F in Z is again a required condition. Whereas
this convexity condition is easy to fulfil, for example by a
cooperative binding of Ca2+ ions, it is questionable if the
other conditions can always be fulfilled. For example, to
fulfil another required condition FXX = kon(∂

2f1/∂X2 −
KD∂2f2/∂X2) > 0 (cf supporting text, section 3 (available
at stacks.iop.org/PhysBio/7/036009/mmedia)) over some
interval, we would need f1 to be strictly convex in X and/or f2

to be strictly concave in X and KD sufficiently high. Since a
cooperative behaviour in the binding of inactive target proteins
has not been observed, f1 cannot be convex in X, but in fact
is most likely linear or even concave because of saturation
effects. Therefore, at least f2 needs to be strictly concave
in X and KD should be sufficiently high. However, a high
dissociation constant results in a small concentration of the
active target protein. In view of these arguments, it seems
natural that there will only be a limited range over Z in which
the steady-state response Xss(Z) is convex. To determine
this range is hard in the general case without specifying the
involved kinetics.

3.3. Interpolating the limit cases

Above, we have derived our results only for the limit cases of
very low and very high activation constants to ensure analytical
tractability. In general, however, it is very difficult to obtain
analytic expressions for the average activated target protein
〈X〉. The derivation of a very general result for arbitrary
functions F(Z, X) using a two-dimensional version of Jensen’s
inequality is possible (cf supporting text, section 4 (available
at stacks.iop.org/PhysBio/7/036009/mmedia)). However, for
the result to hold it requires that F(Z, X) is a convex function
over Z and X. The conditions one derives for the convexity
of F(Z, X) are similar to the ones derived for the convexity
of the steady-state response Xss(Z) in (24) (cf section 3.2)
except that they have to hold over the entire subset [Z1, Z2]
and [0, Xtot]. As before it is unlikely that these conditions
hold over the whole subset, since this would require a high
dissociation constant KD, which in turn means low active
target protein concentration. Therefore, this general result
is only applicable under special conditions that are unlikely to
be fulfilled.

When the functions f ∗
1 and f2 are linear it is possible to

derive an expression for X(t), but the involved integrals need
the signal to be specified. This can be done by considering
a square-shaped signal, which resembles experimentally
observed Ca2+ spikes [33]. One can then show that the
average 〈X〉 is strictly monotonic decreasing in the activation
constant kon (cf the supporting text, section 5 (available at
stacks.iop.org/PhysBio/7/036009/mmedia)). In this case the
two limit cases can serve as lower and higher bounds and the
lower bound, which actually is the oscillation case (kon → ∞),
defines the conditions for a better activation of the target
protein by oscillations.

But monotonicity of 〈X〉 in kon is not always the case as
can be seen in numerical simulations when using Michaelis–
Menten kinetics for f ∗

1 and f2 and square-shaped signals
(figure 4). The square-shaped T-periodic signal is described
mathematically as [27, 32, 33]

Z(t) =
{
Z2, if (t mod T ) � Tp

Z1, else.
(25)

Here Z1 is the resting level. Tp and Z2 denote the length
and height of each Ca2+ peak, respectively. Usually, one also
defines the duty ratio of the signal as γ = Tp/T . It is therefore
a measure of the narrowness of the Ca2+ peaks.

One can observe in figure 4 that the advantage of the
oscillating signal compared to the constant signal is huge.
For specific values of KD one obtains a maximum 〈X〉
in kon. In all simulations with biologically meaningful
parameters for the signal we obtained a maximum, which
is a hint that we can still use the appropriate limit case at
least as a lower bound. In the supporting text, section 6
(available at stacks.iop.org/PhysBio/7/036009/mmedia), we
derive analytically the average value 〈X〉 for a caricature
system with Michaelis–Menten kinetics acting nearly
saturated and spike-like Ca2+ oscillations. The resulting
system shows pronounced zero-order ultrasensitivity [48] and
similar behaviour as in figure 4. One can derive that for such
a system a strictly monotonic average 〈X〉 in kon, which is the
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Figure 4. The average target protein activity of X(t) in the periodic
phase is plotted over different activation constants kon. Equation (3)
is modelled with f ∗

1 and f2 described by Michaelis–Menten kinetics
with the Michaelis constant 0.1. The activation kinetics is given by
v(Z) = Z4 and the total protein concentration is Xtot = 1. The
underlying signal is described by square-shaped spikes with T = 2,
Tp = 0.2, Z1 = 0.08 and Z2 = 0.8. Plotted are the results for
different dissociation constants KD: 0.1 (�), 0.05 (• ), 0.01 (�).
The corresponding activation achieved by a constant signal
Z̄ = 〈Z〉 = 0.152 is indicated by the open symbols. The two
derived limit cases for kon → 0 and kon → ∞ are denoted by the
(blue) open symbols with a dot.

case when KD is sufficiently small, is more physiologically
relevant.

In the numerical study of the Ca2+-activated liver-
glycogen phosphorylase [15] the model is more complicated
with a non-separable function f1. In that study, numerically it
was shown that the average is strictly monotonic increasing in
the oscillation frequency ν = 1/T [15, figure 2]. From control
analysis of periodically forced oscillations it is known that
the following summation theorem holds for time-independent
quantities like the average 〈X〉 [49]:

d〈X〉
dkon

kon

〈X〉 +
d〈X〉
dν

ν

〈X〉 = 0. (26)

Since ν > 0, kon > 0, 〈X〉 > 0 and from the figure
d〈X〉/dν > 0, we can deduce that d〈X〉/dkon < 0 and
therefore the average 〈X〉 is strictly monotonic decreasing in
kon at least for the parameter values used in the study [15].

Finally, we note that the two limit cases can be seen as
approximations for a wide range of activation constants, and
we assume that many of the Ca2+-dependent proteins act in
one of the two regimes of oscillations or signal integration.

3.4. Model example

To exemplify the results from section 3.2, we consider an
instance of the general model in (3) used in [42]. This
minimal model describes the activation and deactivation of a

Ca2+-dependent protein X (e.g. CaMKinaseII) by cooperative
binding and dissociation of Ca2+:

dX

dt
= kon(Z

n(Xtot − X) − KDX). (27)

In this case we have f1 separable with a convex activation
kinetics v(Z) = Zn and cooperativity factor n > 1.
The functions f ∗

1 = f2 are linear kinetics in their
arguments. Since the linear kinetics are monotonic
increasing the system reaches a stable and unique periodic
phase (cf the supporting text, section 1 (available at
stacks.iop.org/PhysBio/7/036009/mmedia)). The stable
steady state is given by a Michaelis–Menten-like term
increasing in v:

Xss = Xtot
v(Z)

KD + v(Z)
. (28)

Moreover, the term is a concave function over the whole
positive real space. Thus, this model has the presumably
more desired property than 〈Xosc〉 � 〈Xint〉 for all signals Z(t)

with arbitrary amplitude ranges.
Since v(Z) is a convex function we deduce that in

the integration case oscillations are always more potent in
activating the protein than a constant signal with the same
average. In the oscillation case the concentration of the Ca2+-
activated protein X is described via a Hill-like term in Z:

X(t) = Xss(v(Z(t))) = Xtot
Z(t)n

(KS)n + Z(t)n
, (29)

with the half-saturation constant KS = K
1/n

D and cooperativity
n. The Hill kinetics is a sigmoidal curve: it contains
convex and concave parts, separated by the point of inflection
(X′′(Zip) = 0) in the middle which is given by

Zip = KS

(
n − 1

n + 1

)1/n

. (30)

Obviously, the inflection point is always below the half-
saturation constant KS. The convex contribution in (29)
arises from the convexity of the activation kinetics v with
n > 1. Otherwise, for n � 1 there would be no convex
part because then both functions Xss and v are concave. This
illustrates the importance of a convex activation kinetics. Since
〈Xosc〉 � 〈Xint〉, we need to check under which conditions
Jensen’s inequality holds: Xss(〈Z〉) � 〈Xss(Z)〉. Obviously,
when the amplitude range is limited by Z2 � Zip, the
inequality holds for an arbitrary signal because it is restricted
to the convex part of (29). This can be achieved by a low Ca2+

peak height or a high value for the dissociation constant.
The above conditions on the peak height and dissociation

constant can be further specified when the Ca2+ signal is similar
to square-shaped spikes (cf (25)). As we have shown in a
previous study on Ca2+ oscillations [19, equation (27)] the
Ca2+ peak may also extend into the concave part of a Hill
kinetics for the inequality in equation (22) to be fulfilled. This
crucially depends on narrow Ca2+ spikes and very low resting
levels between those spikes.
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3.5. Comparison with previous studies

3.5.1. Theoretical studies. Our analysis generalizes some of
the analytic results obtained in [33]. In that study the response
of an instance of our general system in (3) to a square-shaped
signal was derived and compared to a constant signal with the
same average. To be specific: a separable function f1 with a
Hill kinetics in Ca2+ for v and f ∗

1 and f2 linear were used. The
analysis is similar to ours in section 3.2 in that the limit cases of
very low and very high activation constants kon were examined.
It was also shown that these limit cases correspond to signals
with high and low frequencies, respectively. In the first one the
protein cannot react to the signal because the signal frequency
is very high and thus the protein integrates the signal, whereas
in the second one the frequency is low enough for the protein
to adjust its level and therefore to oscillate with the signal.
Their analysis emphasized the importance of cooperative Ca2+

binding to the Ca2+-dependent protein. However, as we could
show here it is the convexity of the kinetics v which is relevant.
The results can be well understood in our framework and the
critical values obtained there [33, equations (39a) and (40a)]
correspond to critical values fulfilling equations (20) and (22)
in section 3.2.

Next we compare our results with the numerical study
in [36]. The decoding model is essentially the same as the
one in [33]; however, the underlying signal is generated
by the Li-Rinzel model [50] describing Ca2+ oscillations.
They compared the activation of target proteins achieved by
oscillations with the one achieved by a constant signal with
the same average. First, they found out numerically that the
mean target activity is increasing with the stimulation level of
the second messenger inositol 1,4,5-trisphospate (IP3). From
our analysis this can be explained as follows: the higher the
stimulation level, the higher will be the frequency of the Ca2+

oscillation, a phenomenon that has been termed frequency
encoding [6, 30]. Therefore, the behaviour of the Ca2+-
dependent protein will tend from oscillation to the integration
of the signal with increasing IP3 concentration. Because in
their model the functions f ∗

1 and f2 are linear, the steady state
Xss is a concave function of v (cf section 3.4, equation (28)),
which implies that the activation achieved in the integration
case is higher than in the oscillation case.

Moreover, in the above-mentioned specific model, it was
found that without cooperativity in the Ca2+-binding (Hill
coefficient n = 1) activation by a constant signal with the
same average is always better than by an oscillating signal
[36]. Note that for n = 1 the Hill kinetics v(Z) becomes
a concave Michaelis–Menten kinetics. In section 3.2 we
have shown that it is necessary for v(Z) to be convex over
the signals amplitude range in the oscillation and integration
cases. Therefore, without cooperativity the functions v(Z)

and Xss(v(Z)) are completely concave, which prevents a better
activation by oscillations.

In the numerical study by Gall et al [15] the activation of
the liver glycogen phosphorylase b by Ca2+ oscillations was
analysed. The specific model is rather complicated with a
non-separable function f1 and a Michaelis–Menten kinetics
for f2. They first analysed the response to artificial sinusoidal
oscillations of Ca2+ and compared the level of activation with

the activation by a constant signal of the same average, which is
the same question we study here. However, since experimental
Ca2+ time courses are for most parts non-sinusoidal, the
situation in a full Ca2+ model was also numerically analysed in
that study. It was found that the activation of the phosphorylase
b achieved by oscillations outperforms the activation by a
steady-state signal [15, figure 6]. The model used for the
generation of Ca2+ oscillations in that study has an interesting
property. Due to its special stoichiometric structure and a
linear efflux kinetics of Ca2+ out of the cell, the steady-state
Ca2+ level Zss is equal to the average oscillating Ca2+level
〈Z〉, that means Zss = 〈Z〉 [16]. Therefore, the activation of
the target protein by the steady-state signal is the same as the
activation achieved by a constant signal with the average of the
oscillating signal. This property allows us to apply our results.
The complexity of the model leads to cumbersome equations.
Therefore, we only approximately compare the activation by
oscillations and the steady-state signal.

We first compute the amplitude range of the Ca2+ signal
over the stimulation parameter β using the same model
for Ca2+ oscillations and parameters as in [15]. For low
stimulation levels β � 0.2, which correspond to low-
frequency oscillations of Ca2+ leading to the oscillation mode
of the target protein, the Ca2+ oscillations range from ≈0.1 μM
to ≈0.8 μM. We need to consider Xss(Z) in the oscillation
case, which has an inflection point at Zip ≈ 0.31 μM.
Although the Ca2+ peaks reach comparably far into the concave
part of Xss, they do so only for a very small amount of
time because of the spike-like Ca2+ oscillations with narrow
Ca2+ peaks that are characteristic for relaxation oscillator
models [51]. If we use the square-shaped signal formalism
(cf equation (25) for a definition) as an approximation, with
Z1 = 0.1 μM and Z2 = 0.8 μM, one can show that the critical
inequality (24) is fulfilled for the duty ratio γ = Tp/T smaller
than 0.25. Such narrow spikes are indeed observed for a
low stimulation parameter β. In contrast, high stimulation
levels β, which correspond to high-frequency oscillations of
Ca2+, lead to the integration of the signal by the target protein.
For the integration case, we need to examine the convexity
of f1(Z,X) over the amplitude range of Z. The amplitude
range in this case is approximately [0.2 μM, 0.6 μM]. Using
the square-shaped signal formalism and considering this time
the critical inequality (23), we derive that it is fulfilled for
γ � 0.9. Such or even lower duty ratios are observed for
β � 0.35. Thus, our analytic results predict the numerical
observations.

3.5.2. Experimental studies. An experimental study of our
subject using artificially produced Ca2+ spikes and measuring
the gene expression level achieved by the activation of the
transcription factor NFAT in Jurkat T cells was done in [37].
It was found that under low levels of stimulation, which means
small Ca2+ peaks and a low average level of Ca2+, oscillations
enhance the activation of NFAT [37, figure 2(a)] compared to
a constant signal with the same average. Under high levels
of stimulation, however, the constant signal performed better
[37, figure 2(b)].
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To analyse the results in our theoretical framework, we
first need to determine how we can effectively model the
Ca2+–NFAT signalling system and its relation to the measured
gene-expression level. We utilize the results from a related
study on the nuclear translocation of exogenous NFAT in
baby hamster kidney cells and endogenous NFAT in Jurkat T
cells [39]. In that study a model including phosphorylated-
cytoplasmic NFAT, dephosphorylated-cytoplasmic NFAT
and dephosphorylated-nuclear NFAT, which then initiates
gene expression, was fitted to experimental data. The
dephosphorylation by the phosphatase calcineurin is the Ca2+-
dependent step [21]. Moreover, we assume that the gene
expression is directly proportional to the concentration of
nuclear NFAT. Although the model includes three variables
and a feedback, it can be effectively reduced to a model for
only the dephosphorylated-cytoplasmic NFAT. This is due to
the conservation relation for the overall NFAT concentration
in the cell and the fitted low conversion rate k4 = 0.035 min−1

of nuclear NFAT back into the cytoplasmic-phosphorylated
NFAT. The latter implies the breaking-up of the feedback and
timescale separation such that the nuclear NFAT integrates the
concentration changes of the dephosphorylated-cytoplasmic
NFAT over time. The integration property was validated
experimentally in that study. Therefore, if a periodic Ca2+

signal Z(t) controls the dephosphorylation via calcineurin
the concentration of the nuclear NFAT Nn is, after an initial
transient, approximately given by

Nn = k3

k4
〈Nc〉, (31)

where Nc is the dephosphorylated-cytoplasmic NFAT and k3

is the transport rate of Nc into the nucleus. Furthermore, if
the kinetics of Nc is linear, as assumed in the fitted model [39]
and we assume square-shaped Ca2+ spikes, then we have

〈Nc〉 � 〈Nc,ss(Z)〉. (32)

This is because for linear kinetics we can use the oscillation
case as a lower bound for the average protein concentration
(cf section 3.3). In contrast, if a constant Ca2+ signal with the
same average 〈Z〉 is applied, the steady-state concentration of
the nuclear NFAT is given by

Nn,ss(〈Z〉) = k3

k4
Nc,ss(〈Z〉). (33)

We want to analyse under which conditions the average
nuclear NFAT concentration is higher than the steady-
state concentration achieved by a constant Ca2+ signal:
Nn,ss(〈Z〉) � 〈Nn〉. Equations (31)–(33) imply that to do
this it suffices to consider Nc,ss(〈Z〉) � 〈Nc,ss(Z)〉. Due to
(33) this is equivalent to

Nn,ss(〈Z〉) � 〈Nn,ss(Z)〉. (34)

Since we assumed the gene expression to be directly
proportional to the nuclear NFAT concentration, we can read
out Nn,ss(Z) directly from the experimentally measured gene-
expression levels under different constant Ca2+ concentrations
[37, figure (3a)].

After having related the measured gene-expression levels
to the Ca2+–NFAT signalling system we can analyse the

experimental results in [37] using our theoretical approach.
The two compared artificial Ca2+ signals in the study have
different peak heights (i) Z2 ≈ 0.75 μM and (ii) Z2 ≈
1.25 μM and different average values (i) 〈Z〉 = 227 nM and
(ii) 〈Z〉 = 340 nM, whereas the baseline level Z1 ≈ 0 μM
and the period T = 100s remain the same. Now we
examine the convexity of the steady-state concentration of
the nuclear NFAT Nn,ss(Z) over the Ca2+ signal’s amplitude
range. Nn,ss(Z) shows a steep sigmoidal dependence on the
Ca2+ level and was fitted in their study by a Hill kinetics
with KS = 270 nM and n = 4.7 [37, figure (3a)], although
such a dependence could also be achieved by zero-order
ultrasensitivity [48]. Here, we use a Hill kinetics for Nn,ss

and apply the square-shaped signal formalism from (25) for
the Ca2+ spikes. It can then be shown that with the values given
in that study for the signal (Z1 ≈ 0 μM, Z2 and 〈Z〉) and the
Hill coefficient the critical inequality (34) is only fulfilled for
(i) KS � 272 nM and (ii) KS � 420 nM.

The first bound coincides with the KS value obtained by
Dolmetsch et al [37] from a fit to the data (KS = 270 nM).
Therefore, one would expect that oscillations and a constant
signal perform equally well. However, the experimental
observations point to a slight advantage of oscillations
[37, figure (2a)]. This is probably due to the approximative
nature of our above analysis, which involves the approximation
of the signal by square-shaped spikes and a fitted Hill kinetics
to the data for Nss. On the other hand, the second bound is
1.5 times higher than the fitted KS value. This means that the
Ca2+ spike reaches too much into the concave part of the Hill
kinetics and the advantage of oscillations is lost. This explains
why in the experiments under high levels of stimulation
the constant signal outperforms activation by oscillations
[37, figure 2(b)].

Moreover, in the study by Dolmetsch et al the response to
oscillatory and constant signals under different average levels
of Ca2+ 〈Z〉 was analysed [37, figure 2(c)]. It was found out
that oscillatory signals outperform constant signals as long
as 〈Z〉 � 300 nM. The different average levels of Ca2+ were
achieved by adjusting the peak height Z2, while the duty ratio
γ remained constant. To analyse this in our framework, we
again use the fitted Hill kinetics for the measured steady-state
response Nn,ss [37, figure 3(a)]. The inequality (34) with
〈Z〉 = γZ2 has to hold

〈Z〉n
(KS)n + 〈Z〉n � γ

(〈Z〉/γ )n

(KS)n + (〈Z〉/γ )n
. (35)

We can rearrange this to obtain an upper bound for 〈Z〉:

〈Z〉 � KS

(
γ − γ n

1 − γ

)1/n

. (36)

With the parameters given in that study [37]: γ ≈ 0.3,
KS = 270 nM and n = 4.7 the upper bound is ≈225 nM.
This is in good agreement with the experimentally derived
upper bound of ≈300 nM.

In another experimental study the activation of Ras by
Ca2+ signals in HeLa cells was studied [28]. Ras is a small
protein that interacts with many different signalling pathways
in the cell, for example the important extracellular signal-
regulated kinase (ERK)/mitogen-activated protein kinase
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(MAPK) cascade. Moreover, its conversion to the active GTP-
bound form is dependent on Ca2+-regulated proteins [52]. In
the experimental study it was shown, as before for NFAT,
that oscillations outperform constant Ca2+ signals in terms
of active Ras–GTP concentration but only under low levels
of stimulation with an average level of Ca2+ 〈Z〉 � 400 nM
[28, figure 2(b)]. To analyse this system we first need to
ensure that we can apply our theoretical results. Ras cycles
between two forms: the inactive GDP-bound form and the
active GTP-bound form. The conversion between the inactive
and active form depends among others mainly on guanine
nucleotide exchange factors (GEFs). These in turn are affected
by Ca2+. The conversion between the active into the inactive
form is done by GTPase-activating proteins that enhance
the intrinsic GTPase activity of Ras. Moreover, the total
concentration of Ras remains constant over the timescale of
regulation. This allows us to apply our theoretical results
to explain the experimental observations. The steady-state
concentration of Ras–GTP upon constant stimulation by Ca2+

Rss(Z) has been measured in dendrites and spines and shows
a sigmoidal dependence on Ca2+ that was fitted by a Hill
kinetics with n = 3.1 and KS = 900 nM [53]. Due to the
lack of more experimental data regarding the detailed kinetics
of the Ras–GEF signalling pathway we rely on the steady-
state concentration data and analyse the oscillation case where
Ras–GTP still oscillates with the Ca2+ signal. In analogy to
(34) we then have an inequality for Rss(Z). The artificially
created spikes in the study by Kupzig et al [28] can again be
approximated by square-shaped spikes (cf equation (25)) with
Z1 ≈ 0μM and T = 100s. To obtain signals with different
average concentrations the spike interval and thus the duty
ratio γ was kept fixed at ≈0.5, while the peak height Z2 varied.
Therefore, we can directly use (36) to obtain an upper bound
of 〈Z〉 � 830 nM. The deviation from the experimentally
measured value of 〈Z〉 � 400 nM can again be explained by
the square-shaped spike approximation and the assumption
that Ras–GTP still oscillates with the Ca2+ signal.

4. Discussion

Here, we have analysed the effect of oscillations in intracellular
Ca2+ on the activation of Ca2+-dependent proteins. Jensen’s
inequality has allowed us to derive analytical results for
arbitrary oscillation shapes and a very general decoding model.
The main motivation for previous theoretical investigations
of this issue [15, 33, 34, 36] was provided by experimental
findings that the transcription factor NFAT is activated better
by oscillations than by a constant signal with the same average
level under low levels of stimulation [28, 37, 39]. Those
studies were either numerical [15, 34, 36] or used specific
Ca2+ signals to be analytically tractable [33]. The general
model established here comprises the various models used in
those and other studies [30, 42] and uses arbitrary signals.
We derived two asymptotic solutions for the oscillation (high
activation constant) and integration (low activation constant)
cases of the target protein.

In the previous investigations it was found out that a
cooperative binding of Ca2+ and therefore a nonlinear decoding

of the signal is important for oscillations to activate target
proteins better [33, 36]. By the use of our general model in
(3), which describes the activation of the target protein X by
a differential equation, analytically we were able to show that
the convexity of the involved kinetics over the amplitude range
of the Ca2+signal is crucial. Cooperativity in the binding is
only one way of realizing convexity, zero-order ultrasensitivity
is another [48]. Our analysis thus extends the studies by
Gall et al [15] and Zhao et al [36] in that the derivation has
been done analytically and that of Salazar et al [33] in that
arbitrary signals have been considered here (while square-
shaped signals were used in [33]).

We first compared an arbitrary oscillating signal and
a constant signal with the same average. We derived the
following conditions under which oscillations outperform
constant signals with the same amount of Ca2+ in terms of
target protein activation: (i) in the integration case (very
low activation constant kon) it is necessary that f1(Z,X)

(or equivalently v(Z) when f1 is separable) shows a convex
dependence on the Ca2+ concentration, Z, over the amplitude
range of the oscillations. This is most likely achieved
by a cooperative binding of Ca2+ and indeed most of the
Ca2+-dependent proteins bind Ca2+ cooperatively [33]. This
shows the benefit of Ca2+ oscillations for the cell, where
due to a cooperative Ca2+ binding temporarily high Ca2+

concentrations achieve a higher level of protein activation.
(ii) In the oscillation case (very high activation constant kon) it
is necessary that the steady-state Ca2+ response Xss shows
a convex dependence on the Ca2+ concentration over the
amplitude range of the oscillations. The convexity of Xss

itself is determined by the properties of the decoding system
(F(Z, X)). A sufficient (and necessary in the case of separable
f1) condition for Xss to be convex at least over part of the
amplitude range is again that f1(Z,X) (v(Z) in the separable
case) is convex over Z. However, cooperativity in Ca2+ binding
is not the only way to achieve a (partly) convex steady-state
response Xss as the case of zero-order ultrasensitivity shows.
This property, which arises when activation (f1(Z,X)) and
deactivation (f2(X)) are operating at saturation with X, has
been observed also for Ca2+ binding proteins [54, 55]. It allows
for extremely convex and concave parts of Xss without the need
for a cooperative Ca2+ binding. Moreover, by considering
specific kinetics for the functions in our model we arrive at
conditions relating the amplitude range and parameters of the
kinetics. By further specifying the underlying signal we can
derive, as a special case, the conditions given in [33, equations
(39a) and (40a)].

On comparing our analytical results with the numerical
studies [15, 36] we find very good agreement using the kinetics
parameters in these studies. The comparison shows that our
theoretical results are able to explain the observations of the
numerical studies. We also compared our theoretical results
with that of experimental studies [28, 37, 39]. Given the
approximative estimation of the critical steady-state response
of the target proteins and the assumption of square-shaped
spikes for the signal we achieved good agreement with our
theoretical predictions. Moreover, our study points to the
importance of measuring the steady-state response of Ca2+-
sensitive proteins to constant Ca2+ signals, since these are
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important when subsequent levels in the cascade integrate the
input. It is also important to measure the time course of target
protein activation to decide whether it oscillates with the signal
or integrates it.

Our results can be interpreted in the light of the emergence
of cooperativity in biological evolution. Since experimental
results showed a better activation of target proteins by
oscillations under low levels of stimulation, which were
confirmed here theoretically, it seems that cooperativity of
Ca2+ binding and/or zero-order ultrasensitivity have evolved
to better distinguish between constant and oscillatory signals.
Due to the convex shape of the steady-state active target protein
concentration under constant Ca2+ levels the active target
protein concentration will be very low unless the constant
Ca2+ signal is above a certain threshold. However, when
Ca2+ oscillates the Ca2+ spikes periodically cross this threshold
and achieve a strong activation of the target protein, although
the average Ca2+ level is still low. This leads to an efficient
distinction between constant and oscillatory signals.

It should be noted that recently the stochastic aspect of
Ca2+ oscillations has gained much interest [11, 56–60]. The
Ca2+ signal apparently consists of a sequence of random
spikes, which is particularly evident by considering the
variation of the interspike interval (ISI) [57, 59]. This is due
to the spatial and hierarchical organization of events leading
to a global Ca2+ signal. This organization is mainly influenced
by the clustering of IP3 receptors [61–63] and determines the
occurrence of Ca2+ blips and puffs [64–67]. Only under a
strong coupling of spatially discrete IP3-receptor clusters, the
probability for the nucleation of the next Ca2+ wave is high
enough to establish an almost regular oscillating system, a
mechanism that has been termed array enhanced coherence
resonance (AECR) [59, 68–70]. In this context, convexity
may also be important to eliminate unwanted stochastic effects
on the target protein activation because, due to the random
opening of Ca2+ channels in unstimulated cells, the steady-
state Ca2+ concentration fluctuates. In our study we have
used arbitrary Ca2+ signals with a defined period. Due to the
stochastic nature of the Ca2+ signals, and especially the ISI,
it would be worth extending our analysis also to signals that
model the variance in the period in order to assess the effects
of stochastic channel opening on target protein activation.
A further future direction is the generalization to protein
cascades. Here, we have focused on one level of protein
activation only. Since, usually, downstream levels do not
show cooperativity, oscillations and constant signals would
reach the same activation at those levels, as long as there is no
feedback to upstream levels. Thus, the existence of cascades
is likely to have other functions such as signal amplification
[71, 72], band-pass filtering [32] and cross-talk [71].
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