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1. Introduction
1.1. Background

Infectious diseases have proven to be remarkably resilient foes of humanity. Despite major achievements in other areas,
such as discovering gravitational waves and landing humans on the Moon, we still have not eradicated most vaccine-
preventable infectious diseases [1]. Many of these diseases - measles, pertussis, influenza, and many others — have been
burdening us for centuries, while new infectious diseases - such as Ebola, Zika virus, and SARS - continue to emerge from
animal populations and make the jump to human populations, or spreading to new human populations due to climate
change or other anthropogenic disturbances [2].

Sometimes, successful infection control is a matter of ensuring access to preventive technologies such as vaccines [3].
Barriers to access in lower-income countries remains an important reason why infectious disease burden remains high in
many poor populations [3]. However, there are reasons to be cautiously optimistic that barriers to access will continue to
fall, enabling more people to be vaccinated. For instance, measles was completely eliminated from South America in the
1990s [4], prompting many health researchers and policy experts to conceive of global measles eradication as a potentially
realistic goal for the first time. Mathematical and statistical models, often based on methods and concepts borrowed from
physics, have played a significant role in infection control by helping determine how to apply control measures in order to
quickly and most effectively contain epidemics and helping predict and understand disease outbreak patterns, among their
many other uses [5].

However, as our technologies advance and access to vaccines begin to become less important as a barrier, it is becoming
clear that our own behavior may prevent local elimination or global eradication in many cases [6]. For instance, unfounded
vaccine scares such as the ongoing measles—mumps-rubella vaccine autism scare which started in 1997, or the oral polio
vaccine scare in northern Nigeria in 2003-2004 which arguably delayed global polio eradication by a decade, can enable
a resurgence of disease in a population [7]. When the infection spreads to other populations in turn, local elimination or
even global eradication can be threatened. Similarly, traditional infection control methods such as isolation, quarantine, and
contact tracing require adequate levels of support from the public. When this is lacking, sometimes due to mismanagement
of the situation by authorities or inadequate response of the international community, then infection control can fail, as was
observed in the early stages of the 2014 West African Ebola outbreaks and in many other situations [8].
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1.2. Motivation and objective

In summary, recent decades have seen the continual emergence of new infectious diseases together with growing
examples where the technologies exist to eliminate long-established infections, but human behavior has prevented
elimination. Moreover, more data on human behavior are available than ever before, at very high levels of spatial and
temporal resolution through sources such as internet search engine data, Bluetooth technologies, and social online media.

These trends may partially explain the surging interest in incorporating human behavior directly into mathematical
models of infectious disease transmission, in order to understand the two-way interplay between the dynamics of human
behavior and the dynamics of infectious diseases. By accounting for human behavior, mathematical models may provide
more insight, and better predictions, than models that neglect the enormous impact that behavior can have on infectious
disease dynamics. For brevity, we will refer to such models as ‘coupled behavior-disease models’ through the remainder of
this report, although models that only explore one direction of the coupling, from human dynamics to disease dynamics, or
from disease dynamics to human dynamics, are also relevant to our report.

Much of this work relies upon methods and concepts from physics, either directly or indirectly. This is neither new nor
surprising. For instance, exponential decay can describe radioactive decay of particles, or exponential growth can just as
well describe the early growth of an invasive species. Hence, physics in general, and statistics physics in particular, is highly
relevant to the development of disease transmission models that take human behavior into account.

The two objectives of our report are (1) to give a state-of-the art overview of the literature on mathematical models of
the impact of human behavior on disease dynamics (and vice versa), with special emphasis on the connections to concepts
and methods from physics; and (2) to provide an outlook on the future of the field, including open questions and promising
directions for future research. We attempted to include as much of the relevant literature as possible, but we were also
cognizant of the need to limit the list of references to a realistic number. Therefore we selected references that best captured
the full breadth of research being undertaken in the field.

1.3. Outline of the report

In Section 2 of the report we provide a brief summary of basic ideas in epidemiology that are necessary to understand
and develop mathematical models of infectious disease transmission. Classic mean-field models of infectious disease
transmission are then described in Section 3. Subsequently we describe models of infectious disease transmission on
networks and other spatially structured populations, including both simulation-based approaches (Section 4) and analytical
approximations (Section 5) to network dynamics. Sections 3-5 are concerned with models of infectious disease transmission
that do not explicitly include human behavior, since understanding such models is a necessary precursor to understanding
models that explicitly do include human behavior. Section 6 provides a rationale for studying models of the interactions
between human behavior and disease dynamics (some of which has already been described in the preceding subsections),
while Section 7 introduces some basic concepts and methods in the modeling of human behavior. Section 8 provides an
overview of mean-field models of coupled behavior-disease dynamics, while Section 9 provides an overview of such models
in the context of networks and spatially-structured populations. The next two sections are concerned with ‘traditional’
sources of data on human behavior (Section 10) and digital sources of data on human behavior (Section 11) from which we
can test and validate models of coupled behavior-disease dynamics. The report concludes with a discussion in Section 12.

2. Basic concepts in infectious disease epidemiology

Infectious disease epidemiology is the study of contagious parasites of humans. Parasitization is one of the oldest
ecological relationships, and has been hypothesized to be a major driving factor in the evolution of a very broad range
of species (the ‘Red Queen hypothesis’) [9]. Indeed, infectious diseases are likely to have been with humans for our entire
existence. The Bible and ancient Greek historical writing contain apparent references to epidemics and case isolation [10,11].
This section describes the basic biology and ecology of infectious diseases, and how such diseases are controlled through
interventions such as vaccines.

Parasites are traditionally divided into two main groups: microparasites and macroparasites. The distinction between
them is their size and parasitic life cycle [12]. Macroparasites are larger forms of pathogens and include ticks, mites,
helminthes and flukes [13]. Macroparasites grow in one host but reproduce by infective stages outside of the host
organism [ 14]. They can be either external parasites (ectoparasitic) or internal parasites (endoparasitic) [ 15]. Comparatively,
microparasites are small, generally single-cell organisms, and are either viruses, bacteria or protozoans [16,17]. They
generally exhibit short generation times and a high rate of direct reproduction within the host organism [ 13]. For simplifying
assumptions in modeling, we focus on the body of literature pertaining to microparasites, where extensive long-term data
and a solid understanding of disease transmission dynamics have contributed to the development of well-parameterized
models [18].

Infectious diseases (both micro- and macroparasitic) can be transmitted to susceptible hosts in a variety of ways. Routes of
transmission are classified as direct and indirect transmission [ 19]. Direct transmission occurs when there is physical or close
contact between an infected individual and a susceptible individual that permits transmission via droplets or aerosols [20].
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Although some exceptions exist, the majority of microparasitic diseases are directly transmitted and exhibit short survival
periods outside of the host organism [18]. Conversely, indirectly transmitted parasites are passed through vectors or are
transmitted vehicularly via the environment [20]. Most macroparasitic diseases are indirectly transmitted, spending part
of their life cycle outside of their host organism [18]. Indirect transmission occurs via another organism through a vector
or via an intermediate host [21]. A vector is an organism that does not directly cause disease, but that transmits infection
of pathogens from one host to another [22]. Vectors can be mechanical or biological. A mechanical vector transmits an
infectious pathogen without it being altered while on the vector [23]. In contrast, biological vectors harbor pathogens within
their bodies and deliver pathogens to new hosts in an active manger, usually a bite [24]. Biological vectors are usually
continuously infected with the disease and in some cases are a required part of the organisms life cycle [23]. Increases
in populations and urbanization, habitat loss, and international travel and trade all contribute to the spread of vectors
and indirect transmission of pathogens [25]. Consequently, the mechanisms of transmission and transmissibility are key
factors of pathogens that influence disease spread and what interventions, if any, are effective [26]. Timing of the onset
of infectiousness relative to the onset of symptoms and duration of infectious periods are additional important factors in
transmission dynamics [26].

Integral to understanding infectious disease dynamics is distinguishing three time periods involved in these processes:
the latent period, defined as the time from infection to the time when a host is able to transmit the pathogen to another
host [22]; the incubation period, defined as the time from infection to the onset of disease [27]; and the infectious period,
defined as the period from the end of the pre-infectious period until the time when a host is no longer able to transmit the
infection to other hosts [28]. The distinction between the incubation period and the latent period of a disease is integral when
considering the effect of control methods based on symptomatic surveillance in a population. If the latent period is shorter
than the incubation period (i.e., infectiousness proceeds with the onset of symptoms), then interventions targeted toward
symptomatic individuals are generally ineffective [29]. Diseases whereby the onset of symptoms coincides with, or proceeds
with infectiousness are more effective at being controlled using symptomatic surveillance methods [21]. Consequently,
an important metric in the controllability of handling a disease outbreak requires the consideration of the proportion
of transmission that takes place before the onset of symptoms occurs [29]. Both incubation period and latent period are
generally modeled following an exponential, log-normal, Weibull, or gamma distribution [21].

Three important characteristics of pathogens that affect transmission of infectious diseases are infectivity, virulence and
pathogenicity. In epidemiology, infectivity is the ability of a pathogen to cause infection in a susceptible host [21]. Infectivity
can also vary between different strains of the same pathogen. The route of the infection, and the age and innate resistance
of the host are key factors which contribute to the infectivity of a disease [30]. The gauge of infectivity is measured by
the secondary attack rate (the proportion of exposed hosts who develop the disease [31]). Infectivity has been shown to
positively correlate with virulence [32,33]. Virulence, although often used interchangeably with pathogenicity, refers to the
severity of disease after infection occurs [21]. The capacity and vigor of the disease to cause severe and fatal cases of illness
is virulence [34]. Pathogenicity refers to the ability of a pathogen to induce disease [21]. Pathogenicity and virulence are
determined by the interaction between host and pathogen [20]. Characteristics of infectious pathogens that affect virulence
include their ability to replicate, invade organisms and damage the host [20]. Host characteristics also affect the ability of a
pathogen to cause disease, in that pathogenicity and virulence depend on the resistance and immunity system of the host,
in addition to genetic factors, age, gender, and physiological condition [20].

Herd immunity is a form of indirect protection from infectious disease that is brought about by the presence of immune
individuals in a population [35]. With certain diseases that spread from host to host, the level of population immunity is
critical in determining the potential of an epidemic from occurring, and therefore the risk of infection for a susceptible
host in a population [21]. In that transmission occurs between an infected and susceptible host, if the number of immune
individuals is large, then the likelihood that a susceptible individual being in contact with an infected individual is reduced.
Immunity can be conferred through natural immunity, previous exposure to the disease, or through vaccination [36]. The
level of immunity required to attain herd immunity depends on the characteristics of the infectious disease. Generally a
disease with high infectivity requires a higher proportion of immune individuals to achieve immunity than diseases with
lower infectivity rates [36]. Additional considerations are: seasonality, to what effect it has on population mixing and the
viability of the pathogen; the number of susceptible individuals, their age and geographic distribution; and social habits
of the population with respect to mixing and type of contacts made [37]. Mass vaccination to induce herd immunity is
common practice and has proven successful in preventing the spread of many infectious diseases globally [38]. Opposition
to vaccination has posed a challenge to herd immunity, allowing preventable diseases to persist in or return to communities
that have inadequate vaccination rates [39].

An integral application in infectious disease modeling is the need for evaluating intervention strategies and their effects
on new and re-emerging pathogens. The development and widespread use of antibiotics was an important advance in
the treatment of infectious diseases [26]. Antibiotics are a type of antimicrobial used in the treatment and prevention of
bacterial infection, by killing or inhibiting the growth of bacteria [40]. Several antibiotics are effective against fungi and
protozoans [41], but are not effective against viruses [42]. In many cases, their effectiveness and accessibility has led to
their overuse, prompting bacteria to develop resistance [43-45]. Increasing travel and migration have also contributed to
the growth of antibiotic resistance problems [46]. The consequences of antibiotic-resistant infections may result in more
prolonged illnesses, longer hospitalization, increased risk of death and higher health care costs than do infections with
antibiotic-sensitive strains of the same species [20].
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\ Intervention Examples How They Work When Used
Vaccines Measles-mumps- Creates an immune memory of the Used widely for
rubella (MMR) pathogen so immune system can respond  prevention
vaccine, chickenpox more vigorously when challenged with (prophylaxis), and
vaccine, cervical the pathogen; creates herd immunity at sometimes in response
cancer vaccine the population level whereby to outbreaks
unvaccinated individuals derive indirect
protection from vaccinated individuals
Antibiotic Penicillin (bacteria),  Interferes with life cycle of virus or Used widely to treat
drugs, M2 inhibitors and bacterium within the host individual infected
antiviral drugs neuraminidase patients, but may also
inhibitors be used for prophylaxis
(influenza)
Social Authorities close Prevents transmission by limiting contact =~ Used when other
distancing schools, individuals between susceptible and infectious measures are not
spontaneously avoid  individuals in the general population available and/or in a
crowded places severe epidemic (due
to its disruptive nature)
Case isolation  Negative pressure Isolates infectious individuals so they do Used widely, especially
rooms in hospitals, not transmit to others for severe infections
infected individuals
staying home
Quarantine Asking housemates Isolates individuals who may have been Used for severe
of an infected exposed to infection, and therefore infections and/or when
individual to remain  potentially infectious themselves less disruptive
in their house for a interventions (e.g.
duration of time drugs, vaccines) are not
available
Barrier NO95 respirator Physically blocks infection sources, e.g. Used widely to greater
precautions masks, surgical infected droplets or lesser extent
masks, gloves,
condoms
Contact tracing Infectious Contacts can be found and treated, Used widely during
individuals are quarantined, or isolated as needed outbreaks for
queried regarding infections spread
their contacts over through identifiable
the past few days contacts (e.g.
housemates, close
contact infections)
Hygiene Hand washing, Physically removes pathogens Used widely for a
boiling water, variety of infections
washing food

Fig. 1. Summary of commonly used interventions against infectious diseases. We note that this list is not exhaustive, and interventions are often used in
combination, such as contract tracing and isolation.

A primary way to boost immunity in a population is through vaccination [47]. Vaccines are any biologically derived
substance that produces a protective immune response when administered to a susceptible host [21]. Vaccine effectiveness
is the result of the vaccine’s direct effect, which refers to its ability to protect individuals from infection, and its indirect
effect, which is its ability to reduce the spread of infection in a population [48,49]. Notably, no current vaccine is entirely
effective. It is estimated that non-preventable primary vaccine failure rates range from 2 to 50 percent for licensed vaccines
under ideal circumstances in clinical trials [50]. Vaccine effectiveness can be determined by comparing risk of the disease
among vaccinated and nonvaccinated groups. Important variables to consider are that groups are comparable with respect
to exposure, risk of infection, accessibility of the vaccine, and opportunity for diagnosis [21]. Vaccines, antibiotics, and other
interventions are summarized in Fig. 1.

Social distancing is another strategy used to reduce the transmission of infectious diseases. Governments and public
health agencies may promote targeted social distancing as a strategy, in the form of school or workplace closures.
Social distancing also arises as individuals respond to news about disease spread, obtained from media reports, public
announcements, rumors and individual experience [51]. Recognizing the importance of behavioral responses in populations
has altered the way epidemiological modelers consider transmission [52-58]. Such models have shown that social distancing
can be effective at reducing the attack rate of an epidemic [59,60] and that social distancing behavior is a plausible
explanation for certain phenomena arising in real epidemics, such as multiple outbreaks or waves of infection [60,61].

Hygiene refers to environmental conditions and practices that contribute to maintaining health and prevent the spread
of diseases [62]. Aiello and Larson [63] examined the epidemiological evidence for causal relation between hygiene and
infections and found that personal and environmental hygiene significantly reduced the spread of infections. In particular,
the importance of hand hygiene in preventing infections has been widely recognized. Hands are a key step in the
transmission of many infectious agents, and the importance of hand hygiene and interrupting hand contact with body fluids
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in preventing spread of infections is well documented [64-66]. Diseases related to hygiene in general disproportionately
affect poorer members of society due primarily to accessibility of services and/or less polluted environments [67].

Despite the complexities of the biology of infectious diseases on the cellular and organismal levels, it is often possible to
mathematically model the transmission of infectious diseases at the population level. In fact, some of the earliest research
in mathematical biology concerned the analysis of population-level transmission of infectious diseases using differential
equations [68]. The mathematical modeling of infectious disease transmission is the subject of the next section.

3. Basic concepts and methods in epidemiological modeling and vaccination: compartmental (mean-field) models

Epidemiological modeling has nowadays become a global discipline, playing a key role in policy decisions about
prevention and control of communicable diseases. With hindsight, much of this success is due to a few, extraordinarily
fecund, deterministic models, first of all the two classical susceptible-infective-removed (SIR, see Table A.1 in Appendix for
this and other abbreviations used in our review) models for outbreaks and for endemic infections (and related extensions).
These models represent the direct legacy of the intuitions of a few innovators who, at the beginning of the 1900s, imported
the mass-action law of statistical physics to describe infection transmission. This intuition, which represents the building
block of the transmission process of a communicable disease, namely the social mixing between the individuals of a
community, as collisions between particles in a certain medium, has allowed mathematical epidemiology to take-off as a
scientific discipline. This section reviews the key concepts and results of basic deterministic mean-field models of theoretical
epidemiology, departing from an historical overview of the founding role of the mass-action principle (Section 3.1). Notably,
the current behavioral epidemiology revolution stems, one hundred years after the birth of mathematical epidemiology, from
a twofold awareness, first that humans, unlike particles, are thinking agents that might depart from the mass-action rule
especially when the threats from infections are serious, and second that we now have easier access to the tools that are
necessary to finally model such departures. The rest of the section is organized as follows: Section 3.2 introduces a basic
compartmental modeling framework for infection transmission and the underlying key concepts; Section 3.3 reports a non-
technical presentation of reproduction numbers, which are key summary parameters of transmission; the main results about
models for infection with permanent immunity, namely the SIR and SEIR models for outbreaks and for endemic infections,
follow in Sections 3.4 and 3.5 respectively; the effects of mass vaccination for SIR infections are reported in Section 3.6, while
the consequences of immunity losses follow in Section 3.7; the section ends with a discussion of a number of extensions of
basic models (Section 3.9), and of the epidemiological meanings and implications of the use of mean-field approximations
(Section 3.8).

3.1. Mathematical epidemiology: a story shaped by statistical physics

The first application of mathematics to epidemiology dates back to Daniel Bernoulli [69] investigation of the gain in life
expectancy that would be allowed by elimination of smallpox, then a major cause of humans’ death. Though historically
important and far-seeing - smallpox is so far the only infection ever eradicated in mankind history - Bernoulli’s study
cannot however be taken as the birthday of modern mathematical epidemiology, since it neglected the building block
of the diffusion of a communicable disease, namely, the transmission process of an infective agent and its social spread
in a population. The consideration of the transmission process took 150 further years i.e., following the nice historical
reconstruction by Heesterbeek [70], the lapse of time necessary to build a solid scientific background to the idea of contagion.
It is indeed only in the 1870s that the conclusive confirmation by Koch and Pasteur that infectious diseases are caused by
living organisms, definitely paved the way to the explanation of observed epidemic curves (which today we call incidence
curves), giving credit to a number of central earlier intuitions. The main one was the John Snow (Fig. 2) hypothesis that
epidemics come to an end when the availability of susceptible individuals - the “epidemic fuel”- goes down. Some decades
later, while analyzing UK measles incidence data, William Hamer [71] identified the biennial period of outbreaks in towns,
and in particular explained the recurrence of measles epidemics by Snow’s hypothesis, i.e. a new epidemics will start “when
there is a sufficient accumulation of susceptible persons”. In addition he computed from data a relationship of the form “New
cases at time t + 1 = (New cases at time t) x (susceptibles at time t)”. However, he failed to recognize this as a general
mechanistic rule, nor did he draw any implications from it [70]. The key step finally turning mathematical epidemiology into
a scientific discipline occurs when two fine innovators working independently but in strict touch, namely the 1908 Nobel
Prize for medicine Sir Ronald Ross [72,73] and Anderson McKendrick [74] (Fig. 2), formulated and analyzed the first modern
epidemic models [70]. It was in particular McKendrick who, by importing from a stronger domain of knowledge, namely
statistical physics, the mass-action law of chemical reaction kinetics to describe infection transmission as the outcome of the
social contact process between infective and susceptible individuals, sets-up the building block of modern epidemiology,
thereby generating a true Gestalt shift in scientific knowledge. McKendrick’s ground-breaking intuition is summarized in
his metaphor of “collisions”, that he applies to an animal infection: “The rate at which this epidemic will spread depends
obviously on the number of infected animals, and also on the number of animals which remain to be infected, in other words
the occurrence of a new infection depends on a collision between an infected and an uninfected animal.” [74].

This observation makes McKendrick’s seminal study a true - in contemporary language - transdisciplinary paper in
statistical physics. He makes the counter-factual hypothesis that the population behaves as a collection of “particles” of
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Fig. 2. Forerunners of mathematical epidemiology: John Snow (left), Sir Ronald Ross (center), Anderson McKendrick (right).

different types randomly moving in the environment, where each encounter (“collision”) between a particle of susceptible-
type and one of infective-type has a uniform probability that the S-type particle switches into I-type. Translating this into
mathematical language for an infection without immunity in a stationary population of size N, letting Y and X respectively
denote the numbers of infective and susceptible individuals (X + Y = N), and k’ a proportionality constant, McKendrick
derived the following ordinary differential equation (ODE) for the rate of epidemic spread

Y =KY(N=Y), M

as the first true model of modern epidemiology. Passing to the epidemiological fractions S = X/N,I = Y/N,S +1 = 1and
defining k = k'N one gets

=k -1, )

This simple logistic equation, having I = 1 as a globally asymptotically stable (GAS) state reached by a sigmoid temporal
pattern, implies that an infection without immunity spreading according to the mass action principle will eventually affect
the entire population. McKendrick’s full contagion principle represents the first principle of theoretical epidemiology.

By pursuing further his mass-action formulation, McKendrick definitely launched mathematical epidemiology in a
famous series of papers with Kermack [75], where they introduced the celebrated threshold theorem for infections
imparting permanent immunity, studied conditions for endemicity, and introduced and analyzed the first age-structure
epidemiological models. The momentum impressed by Kermack and McKendrick work yielded, with a certain delay, an
explosion of bio-mathematical studies, mostly devoted to the investigation of a number of variants of the key models
introduced by the forerunners. For further historical details see [76].

There is a second major shift however, dating 1975-1980, when another group of innovators [77-79] started and
systematically using mathematical models to interpret epidemiological data and trends aiming to deep the perspectives
for infection control. In this phase, dramatically accelerated first by the HIV/AIDS epidemics in the 1980s, and in the 2000s
by the emergence of influenza pandemic threats, mathematical models of infectious diseases definitely left the boundary
of bio-mathematics and became a central supporting tools for public health decisions, such as determining the duration of
travel restrictions or of school closure during a pandemic event, or the fraction of newborn to be immunized for a vaccine
preventable infection, as measles. It is this fine tuning of epidemiological models that eventually raised the key question of
behavioral epidemiology: given that humans are not “particles”, which is then the role they play for infection transmission
and prevention? [80].

3.2. Basic concepts: homogenous social mixing, infection incidence, force of infection

Regardless of their nature (e.g., directly vs sexually transmitted), for most human infectious diseases the individual life-
course of infection is conveniently represented by a sequence of transitions between a few epidemiological classes, or
compartments, triggered by specific processes and parameters [79,81]. For new pathogens, such as a pandemic flu virus,
all individuals are initially susceptible to the infection (class S), which they acquire at a rate A entering the exposed class (E),
a latency or incubation phase where individuals are infected, i.e. the virus is replicating in their body, but not yet infective,
which they become at some rate «. Individuals belonging to the infective class (I) will usually recover, at a rate y, acquiring
immunity and entering the removed class (R). This Susceptible-Exposed-Infective-Removed course, SEIR for brevity (Fig. 3),
is shared for example by a number of vaccine-preventable infections of childhood yielding lifelong immunity, such as
measles, mumps and rubella. For other, as pertussis and varicella, clinical reinfection through return to susceptibility (at
some rate §) is possible, so that their actual course would be SEIRS.
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Fig. 3. Compartmental representation of the individual course for some important classes of infections: SEIRS model (top); SIRS model (middle); SIS
model (bottom). Boxes identify epidemiological classes and arrows identify the processes governing transitions between classes, and in-out flows due to
demographics.

Based on this representation of the individual course, epidemiological models seek to describe the dynamics of infections
at the population level, by associating to each compartment a dynamic variable denoting the number (or the proportion) of
individuals in that class at each instant of time. Denoting by N the total population size, we let X (S = X/N),H (E = H/N),
Y (I =Y/N),Z (R = Z/N)to denote the numbers (proportions) of individuals who respectively occupy the various classes
attime t, withN = X + H+4+Y 4+ Z,and S + E + I + R = 1. The key process, namely infection spread, focuses on the
number of transitions from compartment S to compartment E per unit of time, which is the absolute incidence (U) of new
infections per time-units. In simple models the mass action formulation of incidence occurs by the concept of homogeneous
(or random) mixing [79,81]. This refers to an infection spreading by direct person-to-person contacts in a closed homogenous
social medium, the population, whose agents have an approximately identical social activity, summarized by the average
number of contacts C per unit time, the same probability I = Y /N that a given contact occurs with an infective individual,
and the same constant probability g; of infection transmission per single adequate social contact (i.e., per single social link in
networks jargon) between a susceptible and an infective individual. Therefore, the expected instantaneous per-capita rate
A at which susceptible individuals acquire infection, called the force of infection (FOI), can be written as: A = f;CI or, setting
B = BiC, as: A = BI. The corresponding absolute incidence U is then given by

U =X =B(Y/N)X, (3)

which is the standard mass action formulation of the incidence and the FOI [81,82]. It depends on the complex parameter
B, representing the total transmission rate per unit of time, which embeds distinct sub-processes, namely social behavior
(mean number and type of contacts per unit of time) as well as the biological process of contagion. Note that, assuming
the frequencies S and I as the “molar concentrations” of the “particles” susceptible subjects and infectious, and the total
population size N as the “Avogadro’s number” of the model in study, then the change per time unit of such “molar
concentrations” is equal to (U/N), which in turn is equal to 8SI, i.e. the Kinetic mass action law.

Also common in biomathematics is the bilinear incidence U = BXY [81,83], which, however, is less supported
empirically [79], and moreover postulates that C is linearly increasing in population size which seems to be reasonable
only in a few special cases, and also in the quite artificial case where the numerical value of 8 scales as 1/N. This means
that one can write U = XY = B(Y/N)X. In other words, in such cases the models, although formally built on the bilinear
incidence, in reality are ruled by the standard mass action law for the contagion mechanism.

To complete the model formulation we make a few further hypotheses. First, we assume that all other epidemiological
processes in Fig. 3, namely, transfers E — I, — R, R — S, occur at constant rates, meaning that the duration of sojourn in
the involved states is exponentially distributed. This means for example that y = 1/D, i.e. that the rate of recovery is the
reciprocal of the average duration D of the infective phase. Second, we assume that the population is large, so that the law of
large numbers rules out large chance fluctuations, and closed to migration, i.e. it evolves over time due the natural balance
between exits due to mortality (from all compartments), at a per-capita rate m(N), and entries due to new births, occurring
at a per-capita rate b(N) into the susceptible class only. Last, we rule out complications such as infection-related mortality,
or vertical transmission from mother to foeta during pregnancy. We can then translate the SEIRS diagram in Fig. 3 into the
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following mean-field system of ODEs

X' = b(N)N +8Z — m(N)X — ﬂX%, (4)
H = ﬂX% —aH —m(N)H, 5)
Y =aH — yY —m(N)Y, (6)
Z'=yY —m(N)Z —$6Z, (7)

where the population size obeys
N’ = (b(N) — m(N))N. (8)

Given that the population evolution is known, one equation can be discarded, since e.g.,Z = N(t) — X — H — Y. Assuming
that the population N has a unique and globally stable equilibrium N, such that b(N.) = m(N,) = u, and that the population
is at its steady state N, yields

S" = (1 —=S) 48R — BSI, 9)
E' = BSI — (o + R)E, (10)
I'=aE — (y + wl, (11)

complemented by R =1 — S — E — I. Model of Egs. (9)—(11) is the so-called deterministic SEIRS model [81].

By suitably restricting some parameters the SEIRS model can be specialized into various “classical” models appeared in
the biomathematical literature. For example, by assuming a negligibly short duration of the exposed phase (i.e. « > 1) and
applying a quasi-steady state approximation

E~ p SI (12)
o+ u
yields
S"=u(1—S)+ SR — BSI, (13)
o
I'~ ——BSI — (y + I~ SI — (y + wl, (14)
a—+u

i.e. the SIRS model (see (Fig. 3), to be complemented by the algebraic equation R = 1 — S — I. Further assuming that the
immune phase is permanent (i.e. setting § = 0) yields the celebrated SIR model with vital dynamics

S"=u(1—=S5)— BsI, (15)
I' = BSI — (y + pl. (16)
On the contrary, the assumption of absence of an immune phase (i.e. § > 1) brings to the SIS model (Fig. 3)
S"=u(1—=S)—BSI+ylI, (17)
I'=BSI— (y + wl. (18)

Finally, by considering epidemic models for which the epidemiological time scales are fast compared to demographic ones,
i.e. by setting in the above model « ~ 0, one obtains models for outbreaks, which include the celebrated SIR epidemic model
by Kermack and McKendrick [75].

3.3. Reproduction numbers of epidemic spread

What happens when a new infectious agent, such as a pandemic virus, enters (e.g. via an infected traveler) a population of
susceptible individuals? Will the virus start spreading and causing an outbreak? And if it does, how fast and how many people
will be eventually hit? Though detailed answers to such questions depend on the characteristics of the infection considered,
a great deal of intuition can be obtained by a few summary parameters. The most well-known is the basic reproduction
number (BRN) of infection, a dimensionless quantity universally denoted by Ry, and intuitively defined as the expected
number of secondary infection cases caused by a single typical infective case during his entire period of infectivity in a
wholly susceptible population [79,82,84,85]. Under homogeneous social mixing R, can be defined as

Ro = BcCD = BD, (19)

where D is the expected duration of the infective phase. In a large homogeneous population living a world without
uncertainty, R, represents, by definition, a threshold parameter stating whether the epidemics takes off, thereby invading
the population (Rg > 1) or dies out (otherwise). In case of invasion R, also represents the exponential growth factor
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of infective cases counted per generations of infection. Let us consider for example an infection imparting immunity, as
influenza, and take Ry = 2, afigure close to the estimates for 1918 Spanish pandemic flu [86]. The initial case (the “traveler”,
representing the zero generation) would cause Ry = 2 cases in the first generation, which would in turn cause Ry = 2 cases
each one in the second generation, and so on, according to the geometric progression 2" after n generations. This exponential
growth according to

Uy = R (20)

holds for the initial invasion phase, that is as far as the depletion of susceptible subjects is negligible. The corresponding real
time growth of infective cases will be U(t) & e'. Assuming a stationary distance between any two consecutive generations
of infection, what today we call the infection generation time [87], and that this equals D, the duration of the infective phase,
leads to the fundamental relation between generational growth and real time growth: Ry = e™®, which enables to estimate
R based on the observed rate of real time growth of cases and the infection generation time. Once epidemic spread has
depleted the susceptible fraction S to levels well below 100%, the definition of Ry does not apply anymore, and the outbreak
evolution is described by the quantity (still assuming homogenous mixing)

REe(t) = RoS(H) (21)

known as the effective reproduction number (ERN), often denoted by R. The ERN captures the fact that contacts with immune
people do not contribute to the further growth of the epidemics. Therefore, still under the Spanish flu assumption Ry = 2,
when the epidemics has immunized 25% of the initial population, cases will temporary grow at the reduced generation
speed R = 1.5, meaning that on average each infective case will now generate only 1.5 secondary cases. With further
progressing of the epidemics, K¢ further declines, and when the immune proportion reaches 50%, implying R = 1, the
incidence curve reaches its maximum, after which the epidemics enters its declining phase, and eventually dies out.

Reproduction numbers allow to also understand some key effects of mass vaccination. For sake of simplicity we consider
a perfect vaccine, i.e. one with 100% take and ensuring lifelong protection against infection. Under the threat of an outbreak,
vaccination by a perfect vaccine of a fraction x of the population initially susceptible would decrease the transmission
potential from Rg to Ry = Ro(1 — x), the so-called vaccine reproduction number (VRN). Therefore, choosing x so as to
bring the VRN below one, namely

x>1—-1/Ro = xc, (22)

would prevent the outbreak to occur. This argument extends to infections that prior to vaccination were persisting
endemically. Assume that vaccination is administered to a constant proportion x of newborn individuals. If vaccination
is continued throughout many consecutive birth cohorts, the susceptible fraction in the population will eventually follow
S < (1 — x), which in turn implies the inequality R = R¢(1 — x). Therefore the condition Ry(1 — x) < 1, yielding
again x > x., represents in this case a correct condition of infection elimination (Anderson and May 1991), since it implies
that the ERN is definitely forced below 1. The quantity x. is termed the critical vaccine coverage. This result, indicating
that a sufficiently large (but always smaller than 100%) vaccine uptake is capable to eliminate infection by breaking the
transmission chain, is referred to as the herd immunity principle. The critical coverage x. is increasing and concave in
Ro. Therefore, for measles, for which Rqs was estimated to be about 15 in England and Wales prior to vaccination, the
corresponding critical coverage is x. = 93.3%, requiring effective vaccination of nearly all newborns.

Both Ry and R actually are model-dependent parameters. That is, any well posed mean-field epidemiological model as
those presented in Section 3.2 (i.e., SIS, SIR, SIRS, SEIR, SEIRS, etc.) will have its own Ry and R, depending more or less
complexly on the model parametric structure, as illustrated in forthcoming subsections. However, fully general routes to
compute RNs are available for very broad families of epidemiological models [82,84,85,88]. The key underlying idea is that
of next generation operator (NGO), which is the positive operator associating to any given distribution of infective cases,
representing a certain generation of infection, the number of cases in the subsequent generation. Properties of positive
operators ensure that iteration of the NGO will eventually bring the exponential growth (per generation) of infective cases at
a factor - the dominant eigenvalue of the NGO - which is currently taken as the most general definition of RN in deterministic
epidemiological models. Historical notes on the ubiquitous role of Ry in mathematical population dynamics are reported
in [89].

3.4. SIR and SEIR models for epidemic outbreaks

What does the framework of Eqs. (9)-(11) further tells us about epidemic outbreaks? For example which is the outbreak’s
temporal profile? When is the epidemic peak reached? Which is the fraction of the population eventually infected? Let us
depart for simplicity from an SIR communicable infection (i.e. we disregard the E class) that is introduced, by importation
of a few infective cases, in a wholly susceptible population, that is with an initial susceptible fraction S(0) ~ 1. As we
are interested here in short outbreaks — such as seasonal influenza, whose outbreaks last a few months, as opposed to
tuberculosis, whose historical onset required many decades - we also neglect the population change, setting u = 0, which
amounts to consider a fixed population. This is a strong assumption making such a model purely transient. We are thus led
to the classical Kermack and McKendrick’s SIR epidemic model [75]
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S’ = —BsI, (23)
I' = BSI — ylI, (24)
where y = 1/D.

As expected from the presence of a communicable disease, the susceptible fraction S is decreasing, as reflected in
Eq. (23). As for the dynamics of the infective fraction, or prevalence, I(t), it is useful to rewrite Eq. (24) as

I'=yI (RS — 1), (25)

where Ry = B/y indeed represents the BRN specific to the above model, given that 8 = B,C,and y = 1/D. R, fully
determines the behavior of the system. Indeed, since S(t) < S(0) < 1, the differential inequality I’ < yI(R¢S(0) — 1)
implies that if

Ro < 1/5(0), (26)

then no outbreak occurs. Note that the initial infective cases will cause a few other cases but the infection will not represent
a threat since there is no increase in prevalence with respect to its initial level Iy. On the other hand, an outbreak is only
possible if I'(0) > 0, i.e. if

Ro > 1/5(0). (27)

Thus R is the key parameter which determines the threshold character of the system, as first noted by Kermack and
McKendrick [75]. The result in Eq. (27), can be put in a number of informative ways. First, if the population is largely
susceptible, i.e. it holds S(0) & 1, the threshold value for model of Eqs. (23)-(24) is 1, as claimed in the previous subsection.
In the presence of a substantial immune component (i.e. S(0) < 1), as is typically the case for seasonal influenza, then the
condition Ry > 1/5(0) can be written as R,S(0) > 1,i.e. Rg(0) > 1, meaning that the occurrence of the outbreak requires
an initial ERN greater than 1 (see previous subsection). A further noteworthy reading of condition in Eq. (27) is Kermack
and McKendrick’s original one [75]: S(0) > 1/, which, in line with John Snow’s seminal intuition, states that an outbreak
requires a large initial susceptible fraction.

The temporal dynamics of the outbreak under Eq. (27) shows, by linearization of Eq. (25), an initial exponential growth
in prevalence according to I(t) ~ I(0)Exp(y (ReS(0) — 1)t), which will be faster the bigger the difference between the
initial value of the ERN and its threshold. This initial exponential growth is followed by a non-linear deceleration due to the
decline in the susceptible pool S, and consequently in the ERN R, = RoS(t). Moreover, at the time t, when S(tx) = 1/Ro
itis I'(ty) = 0, while forall t > t, itisI'(t) < 0, given that S(t) < S(ty) due to the decrease of S(t). In words, the infective
prevalence attains its maximum when the susceptible fraction S becomes equal to the inverse of the BRN, after which the
epidemics enter its declining phase until it eventually dies out.

The maximum of the prevalence can be determined by the curve I(S), which is obtained from Egs. (23)-(24) by taking

a 1

. —— (28)
dS RS
whose solutionin 0 < S < S(0) (remind that S(t) is decreasing) is
1(S) =1(0) +S(0) —S + ! Lo 5 (29)
= e E\s0) )

This implies that the extremum of [ is

log(1 4+ RoS(0))

Inax = I(O) + S(O) - R
0

(30)
Therefore, given a wholly susceptible initial population (S(0) ~ 1), the maximum prevalence is increasing in Ry. For
example, under the Spanish flu hypothesis I;,ox ~ 45%, while for Ry =~ 15, as commonly observed for measles, then
Inax =~ 80%.

Moreover, the cumulative fraction hit by the infection at time t is given by

J(©) =S5(0) — S(t) = I(t) — 1(0) + R(t) — R(0). (31)
Therefore the fraction eventually infected at the end of the outbreak, the so-called final attack rate (AR), is given by
AR =J(0c0) = 1 — S(00). (32)
Setting in Eq. (29)I = 0,S(0) +1(0) = 1, S, ~ 1 — AR yields the following transcendental equation for the AR
AR =1 — exp(—RoAR). (33)

The AR is therefore an increasing and concave function of RRy. For example, under the Spanish flu hypothesis (R & 2) the
predicted AR s close to 80%. More important, Eq. (33) shows that for infections imparting immunity, the outbreak will never
hit the entire population (though the AR may reach levels only slightly lower than 100% for measles-like values of Ry). Also
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Fig. 4. Dynamics of the epidemic SIR model for different values of the BRN: Rq = 2, 3, 5. Left panel: dynamics in the S, I phase plane, based on Eq. (29).
Central panel: time course of the infective prevalence I(t). Right panel: time course of the infective fraction I(t) and the ERN for &, = 2. The duration of

the infective phase D = 1/y is set to 3 days.

this incomplete contagion principle was first noted by Kermack and McKendrick [75]. Starting from Eq. (29), the case where
an initial pool of immune subjects is present (Ry > 0) - as in the case of seasonal influenza outbreaks - is straightforward.

The behavior of Egs. (23)-(24) above the invasion threshold (Ro > 1) (Fig. 4) clarifies the nonlinear tuning of R, on both
the intensity (left panel, based on Eq. (29)) and the time-course of the outbreak (central panel). In particular the decline of
the ERN following the decline in the susceptible pool during the outbreak modulates the changes in the form of the infective
prevalence (right panel of Fig. 4).

Public health actions aimed at reducing the AR, or at slowing down the outbreak course, e.g. by vaccination and/or by
reducing transmission, can be easily accommodated. For example, the effects of an awareness campaigns aimed at favoring
behavioral changes affecting the contact rate, could be modeled by means of a time-varying decreasing transmission rate

B(®).

3.4.1. The SEIR model for outbreaks
The more realistic case where a time-lag between exposure and onset of infectivity exists due to the presence of an

exposed, non-infective, phase, can be tackled by the epidemic SEIR model

S' = —Bsl, (34)
E' = BSI — aE, (35)
I' = aF — yI, (36)

As for Eqs. (23)-(24), it holds S(t) < S(0). The joint dynamics of (E, I) is, instead, more complex. However, observe that the
subsystem (E, I) is cooperative [90] since

I _ BS >0 (37)

ar 2T

oI’

— =oa > 0. (38)

oE

Thus the dynamics of (E(t), I(t)) is such that for all t it holds (E(t), I(t)) < (U(t), W(t)), where

U = BS(OOW — aU, (39)

(40)

W =alU—yW,

(with initial conditions U(0) = E(0) and W (0) = I(0)), whose characteristic polynomial is A> 4 (& + ¥)A + a(y — BS(0)).
Therefore, if Ry < 1/5(0) the infection dies out also for SEIR model. Note also that the system of equations (39)-(40) is the
one (approximately) governing the initial phase of the epidemics, when S(t) &~ S(0). Thus, if 8¢ > 1/5(0) then there is an
initial phase of exponential growth. Finally, for those t > 0 such that S(t) remains bigger than 1/Ry, itis (E, I) > (U;, Wy),

where
, 1
U] :ﬂ(f‘f‘%) Wi —al;,
W) =alU; — yWs,

(41)

(42)
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Fig. 5. Biennial pre-vaccination oscillations of measles in New York, 1943-1963.

(with initial conditions U; (0) = E(0) and W;(0) = I(0)), which is unstable (characteristic polynomial: A% 4 (o +y)A —a Be).
In other words, as long as S(t) remains bigger than 1/Ry, it follows that (E, I) is bigger than an increasing vector.

Summarizing, in vectorial sense, the BRN of the SIR transient model governs also the dynamics of the SEIR transient model.
However, note that a vectorial increasing system, i.e. characterized by eigenvalues that have all positive real part, may have
some of its components that can be transitorially decreasing. For example, if E(0) = O then initially I(t) is decreasing:
I'(0) = —yI(0) < 0.

Finally, let us consider the case of a latent phase of average duration 1/« much longer than the infective phase: o <« y
and such that E(0) = 0, and that there is initially a single infectious subject I(0) = 1/N, so that S(0) = 1—1/N = 1.In
such a case, in the time interval [0, D] there is no new infectious subjects I(t) = constant = 1/N. It follows from

D
J= N/ BS(OI(t)dt ~ BD = Ry, (43)
0

where the number J of secondary infections caused by one infectious subject during his entire infectious period in a wholly
susceptible population is equal to the BRN.

3.5. Emergence and features of endemicity: the SIR and SEIR models with vital dynamics

The SIR and SEIR epidemic models unavoidably predict the extinction of the infection due to the depletion of the
susceptible population. This means that further factors are necessary to sustain endemicity, that is the ability of a
communicable disease to persist in a population in the long-term, with its peculiar patterns, such as the biennial pre-
vaccination oscillations of measles in large UK and US cities (Fig. 5).

The first candidate among such factors is the birth process which allows to rebuild the susceptible pool after an outbreak.
The simplest reference model is therefore the SIR model with stationary vital dynamics [79,81], which is obtained from
Egs. (9)-(10) by disregarding the exposed phase:

S'=pu(—S) — BSI, (44)
I'=BIS — (y + p)l. (45)

Note that system of equations (44)-(45) has a disease-free equilibrium DFE = (1, 0). The BRN specific to this model is given
by

__#A
Y+ u
Indeed, from I’ = (y + WI(ReS — 1) < (v + wWI(Ro(1 —I) — 1) it follows that if Ry < 1thenI(t) — 0and S(t) — 1,

Ro (46)

i.e. DFE is globally attractive. Moreover, linearizing Eq. (45) around the DFE gives, letting i to denote the linearized prevalence,
i = (y + n)(Ro — 1)i, implying that if

¢Ro>]

then the DFE is unstable and an introduction of infective subjects i(0) <« 1 in a wholly susceptible population induces an
outbreak, initially growing asi(t) ~ i(0)Exp((y +u)(Ro— 1)t). Moreover, for Ry > 1an equilibrium with positive infective
prevalence, termed an endemic equilibrium, appears

EE—(SI)—(1 s (1—i>> (47)
S A Ry ety Ro))"
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Fig. 6. The SIR model with vital dynamics: pre-vaccination dynamics of the effective reproduction number (R (t)), with convergence to the endemic
state. The pattern of linear oscillations about the EE is reported in the subgraph, showing the biennial inter-epidemic period. The demographic and
epidemiological parameters are: i = (1/75) year!, y = 52 year~!, Rg = 15.

Note that in the case where y >> u, common for childhood infections, itis I, < (u«/y) < 1. The EE is globally attractive, as
it follows by applying the Poincaré-Bendixon theorem with multiplying factor 1/I

div (;(s/, 1’)) = —% —B. (48)

To sum up, technically speaking, R > 1 induces a transcritical bifurcation at Ry = 1, such that below threshold only the
DFE exists and is GAS, while above threshold the endemic state appears, which inherits the GAS, and promotes an infective
prevalence which is strictly increasing in Ry > 1. In words, if Ry < 1 then the infection is not able to self-sustain and dies
out, whereas if Ry > 1 the infection will invade the population and remain endemic. The behavior of the endemic state is
studied by linearizing around the EE and computing the associated characteristic polynomial

A2+ uRok + p(u +y)(Ro — 1) = 0. (49)

The associated discriminantis A = u? R2 —4u(u+y)(Ro—1) &~ —4u(n+y)(Ro—1) < 0,implying dumping oscillations
of prevalence about its endemic level with natural (pseudo-) period:

2

T = .
Vi +y)(Ro — 1)
In the case of measles, for which 1/y & 1 week, and estimates of R, in the region of 15 [79] were common in western
countries in the pre-vaccination epoch, by taking a life expectancy at birth of 1/ = 75 years, one finds T ~ 2.01 years,
therefore reproducing the measles inter-epidemic period observed in the UK and the US cities before the advent of
vaccination.
The global dynamics of the system, particularly the interplay between infection and demographics, can be unfolded by
a time-scale argument, departing from the introduction of the infection in a wholly susceptible population. Assume for
simplicity that R is greater than 1 and large, and that epidemiological and demographic time scales are well-separated
i.e. y > w.In this case there is an initial phase where model dynamics is essentially described by model of Egs. (23)-(24)
for outbreaks, yielding a large initial epidemics, which exhausts most of the susceptible population, bringing the ERN (and
prevalence) to very low levels, as clear by the thick line overlapped with the vertical axis in Fig. 6. This implies that thereafter
the S-equation takes the approximate form S’ ~ u, which has a twofold effect: it promotes a phase of rebuilding of the
susceptible pool due to the new births on the one hand, while on the other hand it slows down the decline in prevalence,
which avoids the infection to simply die out as in Eqs. (23)-(24). The growth in susceptible population will eventually end
by a new, but less severe, epidemics, which will in turn be followed by a new phase of replenishment of the susceptible pool,
and so on [79] until the endemic equilibrium is achieved (Fig. 6). The global dynamics then consists in continued alternation
between epidemic phases, followed by epochs of demographic replenishment, which is how we know the natural history
of many infectious diseases. The biennial period of quasi-linear oscillations about the EE is emphasized in the sub-graph of
Fig. 6.

(50)

3.5.1. Periodic contact rates

The simple endemic SIR model with constant transmission rate S and stationary population dynamics plays a
fundamental role as trigger of the studies on vaccine-preventable infections of childhood, since it well reproduces, by
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minimal ingredients, their main qualitative and quantitative features such as the endemic oscillation and the observed inter-
epidemic period [79,81]. However, the model fails to capture a number of further characteristics, ranging from the sustained
biennial pre-vaccination oscillations of measles in US and UK cities (see again Fig. 5), to the more complicate dynamics
observed in other contexts, both prior and after mass vaccination [91-93]. Motivated by the fact that both the weather
and certain social processes, namely school-recruitment following the yearly school calendar, have one year periodicity, an
important strain of the literature has focused on 1 — year periodic 8(t) in endemic SIR models. If the corresponding period
Ty is around 1 year, then nonlinear resonance may appear, inducing phenomena such as biennial and multi-year periodicity,
and chaos [91,93-99] that partially explain a number of observed epidemiological time-series.
The effect of periodic forcing in the contact rate on the stability of the disease-free equilibrium, is found by defining

B(®)
w+y

and operating as in the case of constant BRN, i.e. by differential inequality and linearization. Letting (R (t)) to denote the
average of R (t) over [0, Tg], one easily gets that: 1) (Ro(t)) < 1implies the global attractiveness of DFE; (2) (Ro(t)) > 1
implies the instability of the DFE. It is important to note that in the SIR model the stability and instability of DFE are
independent of the specific shape of 8(t): they only depend on its average value. However, this independence of the behavior
on the entire shape of B(t) is a peculiarity of the SIR and of some other epidemic models, but it cannot be generalized.

The inclusion of a latency period in the SIR endemic model leads to the SEIR endemic model

Ro(t) =

(51)

S"=u(1—=5)— BsI, (52)
E' = BIS — (y + @)E, (53)
I'=aE — (y + wl, (54)
whose BRN is given by
SER _ LL' (55)
a+pupu+y

Note thatif 1 < o then R3R ~ R, It holds that (i) if R3® < 1 then the DFE is the unique equilibrium and it is GAS; (ii) if
RIFR > 1 then there is a unique EE, which is GAS. The latter property has been demonstrated by Li and Muldowney [ 100]
as an application of their 3D extension of Poincaré-Bendixon theorem. As for the SIR case, nonlinear resonances are possible
for a 1 — year periodic contact rate under parameter constellations characteristic of childhood infections.

Interestingly, in the SEIR model the deterministic periodic fluctuations of the contact rate have nontrivial effects also on
the stability of the DFE. As regards the global stability of the DFE, also here the cooperativity of subsystem (E, I) implies that
forallt > O(E(t),I(t)) < (U(t), W(t)), where

U = B(tW —aU, (56)
W =aU —yW, (57)

with initial conditions U(0) = E(0) and W(0) = I(0). It follows that if both the eigenvalues of the Floquet’s matrix F
associated to Egs. (56)-(57) are interior to the unit circle in the complex plane, then

), w(t)) — (0,0) = (E®),I(t)) — (0,0) (38)

in turn implying that S(t) — 1. As regards the instability of DFE, by linearizing the SEIR model around the DFE one gets a
linear time-varying system equivalent to Eqs. (56)-(57). Thus if the eigenvalues of the matrix F are outside the unit circle of
the complex plane, then the DFE is unstable.

It is of interest to note that although R3F%(t) ~ R (t), for the SEIR endemic model the stability of the DFE is deeply
different from the SIR case. Indeed, in the SIR model the behavior of the DFE is uniquely determined by the average of the
transmission rate B(t), while in the SEIR case the stability of the DFE depends on the “whole shape” of B(t).

The computation of Floquet’s matrices is usually nontrivial. However, matrix F can be easily computed in the noteworthy
case where B(t) is switching between two constant values, which mimics well the realistic school-holiday scenario where
students have a large number of contacts during the school period, which remarkably reduces during holidays [92,101].
Setting

_ B, ifte[0,T],
PO = iﬂz, ift € (T, 1], (59)
the linear time-varying system of period one year is equivalent to the following two systems
X =MX;;0<t<T, (60)

Xé:MZXZ;T<tS 1, (61)
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where fori =1, 2
M; = [_“ P ] . (62)
L 4
As a consequence F is the product of two matrix exponentials:
F = Exp(My(1 — T))Exp(M;T). (63)

The generalization to more complex patterns of alternance between school and holidays can also easily handled.
In the general case, if one eliminates the first state variable in the above equivalent linear systems, one obtains the
following family of Newton'’s equation [90]

w4+ (y +)w + (y —ap)w = 0. (64)
Further, by setting y(t) = w(t)Exp((y + «)t/2) [102], one yields the Hill family of equations
+a)?
v+ <_<y4> +y —aﬂ(t))y=0. (65)

The families of Eqs. (64)-(65) are ubiquitous and widely studied in various fields of mathematical physics [102-108].
For example, in mechanics they model the periodic perturbations in the elastic force of damped or undamped oscillators
respectively, which are at the base of several theories, such as that of parametric resonance [106-108]; while in applied
electromagnetism Eq. (65) models the frequency modulation [ 104]. Analytic solutions for t € [0, 1] are known for a number
of particular forms of B(t). For example, if 8(t) is linearly increasing, the solutions of Eq. (65)in t € [nT, nT 4 1) are Airy’s
functions, whereas if the contact rate is sinusoidally varying around an average value, the solutions of Eq. (65) are Mathieu’s
functions.

3.5.2. Nonlinear contact rates as a phenomenological route to behavior change

A limitation of mass-action-based SIR and SEIR models with and without vital dynamics, and of other epidemic models,
is that they assume that the behavioral component is either constant (resulting in a constant 8) or influenced by exogenous
phenomena such as the school/work calendar (resulting in a periodic time-varying 8(t) with one-year period). Capasso
and Serio were first in pointing out this shortcoming [109], and in stressing that agents might respond to the threat posed
by the outbreak by changing their social behavior (i.e. reducing their average number of contacts C), and/or by adopting
protections against transmission. They modeled these effects by a prevalence-dependent transmission rate of the form g (I),
B’'(I) < 0, showing that behavior change may deeply modify the quantitative dynamics of an outbreak [109]. In a more
general study on the SIR endemic model [110], it was stressed that prevalence-dependent behavior is influenced by a
range of information variables, some of which can be made available to agents with time-lags. The inclusion of delayed
prevalence-dependent behavior in the SIR endemic model can destabilize the endemic equilibrium by triggering sustained
oscillations, and, in turn, these endogenous oscillations may interact with the one-year periodicity of the contact rate,
resulting in chaotic fluctuations [ 110]. Finally, another seminal paper is Hadeler and Chavez [111], which models the spread
of a vaccine/education preventable sexually transmitted disease in a population split in two groups: an inactive group with
B = 0 and a core active group where 8 > 0. The model included a unidirectional prevalence-depending flux of subjects
from the inactive to the core group, with transfer rate r(I) decreasing with I.

3.6. Mass vaccination and herd immunity for vaccine preventable infections: the SIR model with vaccination at birth

In modern communities new vaccines, targeting different infections and different populations, appear at a continuously
increasing rate, making the mosaic of characteristics of the different available vaccines quite articulated. Nonetheless, much
of the main dynamic effects of mass vaccination in controlling communicable diseases can be understood by the following
simple variation of the endemic SIR model of Eqs. (44)-(45)

S" = (1 —x) — uS — BSI, (66)
I'=BIS — (y + wl, (67)
V' = ux — uVv. (68)

Model of Egs. (66)-(68) (of course R = 1—S —I — V) considers vaccination of a time-invariant, randomly chosen, proportion
x of newborn susceptible individuals per unit of time by a perfect vaccine, i.e. one with 100% take and lifelong duration
(see Section 3.3). Under a perfect vaccine the fraction successfully vaccinated coincides with the vaccine coverage, i.e. the
fraction vaccinated. Vaccinated individuals are fully protected against infection (and ensuing disease) and therefore behave,
in practice, as removed individuals. This does not need to be the case if, for example, the vaccine has waning immunity, or
leaves some residual susceptibility - as is the case e.g. for the varicella vaccine - in which case further compartments are
required.
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After discarding the V equation, the analysis of Eqs. (66)-(67) goes along exactly the same lines as Eqs. (44)-(45). Since
we are interested in infections that are endemic prior to vaccination, we assume Rq > 1, where R still represents the BRN.
The key threshold quantity is now represented by the VRN

__B
gzv_y+u(1 Xx). (69)

It can then be easily shown that Eqs. (66)-(67) have the DFE = (1—x, 0), which is globally attractive if Ry < 1, and unstable
for Ry > 1. For Ry > 1 the model also has the globally attractive (by the same Poincaré-Bendixson argument) endemic
state

EEy = (S.. I.) LI ! (70)
= s = —_—, —_ X - — .
Y e Ro nw+y Ro

This endemic state is also characterized by damped oscillations, with pseudo-period

21

Vi +y)(Ro(1T—%) — 1)

Though the mathematical analysis is the same as for the basic endemic SIR model, there is a number of substantive
implications of vaccination. Indeed, the threshold for the VRN implies the already met coverage threshold: x. = 1 — 1/Ry
(i.e. formula (22)), so that if x > x, then the infection is eliminated (technically, the introduction of mass vaccination above
threshold causes the EE to disappear, leaving only the DFE, which becomes GAS). In the opposite scenario, i.e. if the coverage
is insufficient to achieve elimination (px < x), the infection will continue to persist endemically, in the new long-term
regime described by Eq. (70). This post-vaccination regime is characterized by the same susceptible proportion (1/Rp) as in
the pre-vaccination history, but by a different distribution of immune individuals between natural and vaccine-induced, and
especially by a smaller prevalence and an increased inter-epidemic period with respect to the case where no vaccination
campaign is enacted. The increase in T straightforwardly follows from the reduced replenishment of the susceptible class due
to vaccination. For example, considering again a measles-type parametrization (R¢ = 15,1/y = 1week, u = (1/75)/year),
yielding a pre-vaccination inter-epidemic period of about 2 years, a mass vaccination program with x = 0.9 would increase
the inter-epidemic period to a post-vaccination figure Ty in excess of 10 years.

The dynamic implications of the introduction of a mass vaccination for a measles-like infection are illustrated in Fig. 7
for different vaccination programs (respective coverages: x = 0.80,x = 0.90 and x = 0.95) initiated at time t = 20 years
under the hypothesis that infection spread for t < 20 was evolving in its pre-vaccination regime, characterized by an almost
biennial inter-epidemic period. As expected for x = 0.95 the infection is eliminated, since x > x..In the two remaining cases
the infection remains endemic with a much lower prevalence but with an amazing increase in the inter-epidemic period.
For example, for x = 0.90 the inter-epidemic period initially increases to a level in excess of 20 years before gradually
contracting and converging in the long-term to the above predicted figure of T, =~ 10 years. The inflation in the inter-
epidemic period has far reaching consequences since it implies that unvaccinated individuals who did not acquire infection
early in life might do so at somewhat later ages, where they might be exposed at a much larger risk of serious disease
from the infection [79,81]. The increase in the average age at infection in the post-vaccination regime is the consequence
in the decline in the individual risk of infection, as clear from the decline in the endemic FOI gI,, which shifts from its pre-
vaccination level of w(Ro — 1) to w(Re(1 — x) — 1). These phenomena are of importance, besides measles, for essentially
all vaccine preventable infection, particularly for rubella [79,81].

(71)

Ty

3.7. Return to susceptibility: SIS and SIRS models

If infection-acquired immunity is not lifelong, recovered subjects will eventually become again susceptible. A first
possible scenario is the one where infective subjects directly return to susceptibility, yielding the so-called SIS model (Fig. 3)

S"=u(—=5)—BM®IS+ I, (72)
I'=BWIS — ul — yl. (73)
Since S 4+ I = 1, one gets the scalar model
I'=(u+YIR(OA 1) = 1), (74)
where
B(t)
= 75
Ro(t) Lty (75)

and we still take B(t) as a 1-year periodic function. Unsurprisingly, if (R¢(t)) < 1then the DFEI = 0 is globally attractive,
whereas if (R¢(t)) > 1 the DFE is unstable, and I(t) tends to a one-year periodic solution, i.e. the model predicts that the
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Fig. 7. The SIR model with vital dynamics: pre- and post- vaccination dynamics of the effective reproduction number Rg(t) (left panels) and the
infective prevalence I(t) (right panels) under different programs of vaccination at birth initiated at time t = 20 years with coverage of x = 0.80 (upper
panels), x = 0.90 (central panels) and x = 0.95 (right panels) respectively. The demographic and epidemiological parameters are: i = (1/75) year~!,
y =52year”!, Ry = 15.

disease remains endemic via a series of annual epidemic outbreaks. For a constant transmission rate 8 Eq. (74) is logistic,
therefore implying a constant, globally attractive, endemic state:

1
Igg =1 Ry (76)
where the susceptible fraction is still given by the inverse of R,. Note that the establishment of a globally attractive EE also
holds in absence of vital dynamics (i.e. for © = 0, suggesting that the loss of immunity per se is a further source of endemicity
through rebuilding of the susceptible pool, as first noted by [75].
A second more general scenario occurs when return to susceptibility is buffered by a long sojourn time in the recovered
class, yielding the SIRS endemic model (Fig. 3)

S" = (1 —S) — BSI + R, (77)
I'=BIS — yI — ul, (78)
R =yl — R -8R, (79)
where 1/4 is the average length of the immunity conferred by the disease. From S = 1 — I — R one gets
I'=(u+ Y)I(Ro(t)(1 =1 =R) — 1), (80)
R =yl — (1u+ )R, (81)
where
B(t)
Ro(t) = . (82)
n+y

Again, the infection ultimate fate, namely extinction vs endemicity, depends on whether (R (t)) is smaller or bigger than
one. Under constant g, the threshold condition R, > 1 allows the existence of an endemic state:

1) w3
Ro) w+8+y’

which can be shown to be globally attractive by applying the same Dulac-Bendixon test used for the SIR endemic model.
Mass vaccination by a perfect vaccine can be introduced in SIS and SIRS models along the same route followed for the
SIR model, with analogous results. However, for infections with only temporary, or without, immunity, the hypothesis of a

1
Sep=—. I = (1 83
EE Ro EE ( ( )
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perfect vaccine is mostly unattainable. If the vaccine is imperfect, several scenarios are possible i.e. vaccinated individuals
might either (i) not produce any immune response, therefore remaining fully susceptible, or (ii) produce a weaker immune
response. This weaker immune response might occur in the form of a temporary immunity which however typically wanes
faster than natural one, eventually returning the individual to susceptibility, or in the form of reduced susceptibility, putting
the individual at risk of breakthrough infection, at some reduced force of infection A = o 81 with o < 1. For example, all
these possibilities are known to occur for the current varicella vaccine [112]. This opens a more complicate scenario which
makes infection elimination more difficult. Indeed, as it can be demonstrated even for simple SIS models with vaccination at
birth, there is a range (XE, x?) of the vaccinated proportion p where a bistability phenomenon arises, i.e. where the disease-
free equilibrium is locally stable but it coexists with two endemic equilibria: one unstable and one locally stable. Therefore,
infection elimination requires that x > x¥, whereas if x < x? then there is only one endemic steady state, coexisting with
the DFE which is unstable. This whole scenario is termed as backward bifurcation [113].

3.8. Remarks on the wise use of the mean-field principle in theoretical epidemiology

Thanks to the use of a few important deterministic models, theoretical epidemiology has become a key supporting tool to
public health decision makers. These models, historically derived from classical physical chemistry and other deterministic
applications of statistical mechanics, are, however, only approximations of the underlying real-world stochastic processes,
obtained from the mean-field limits of stochastic birth and death processes analogous to those adopted in chemical
kinetics [114].

In this subsection we therefore concisely remind some well-known tools of nonequilibrium statistical physics [114,115]
with the aim to recall how deterministic epidemic models arise as limits on the underlying stochastic processes on the one
hand, and their shortcomings, on the other hand.

For example, let us consider an epidemic (i.e. no vital dynamics) SIR infection process, with state variables (X(t), Y (t),
Z(t) = N — X(t) — Y(t)). In this process there are two types of events: the infection, responsible for the S — I transition
with infinitesimal probability

Prob (X(t +dt), Y(t +dt)) = X(t) —1,Y()+ 1)) = ,B%X(t)dt, (84)

and recovery, responsible for the I — R transition with infinitesimal probability
Prob (X(t +dt), Y(t +dt)) = (X(t), Y(t) — 1)) = yY(t)dt. (85)

For the SIS model (still without vital dynamics), since X (t) = N —Y(t), the S — [ transition has probability 8(Y/N)(N —Y).

The behavior of the realizations of these epidemic stochastic processes can be simulated exactly by means of the Gillespie
algorithm [ 116], whereas the probability density function of its state variables is described by a multivariate Master equation
(ME) [114,115], which is bivariate for the epidemic SIR process, and univariate for the SIS process. For example, for the
epidemic SIS model the ME reads

%P(t, Y) = ﬂ% (N—(Y=-1)PEt,Y—-1) — ﬁ% (N=Y)P(t,Y)+y(Y+1DP(t, Y+ 1) —yYP(t,Y). (86)

Taking the average (Y (t)) = >_ YP(t, Y) from Eq. (86), we get

d 1

I<Y(t)) = (B—y)(Y (D) — B—(Y*(D)). (87)
t N

Essentially the mean field hypothesis applied in theoretical population models stands, for large populations, in neglecting the

correlations between the state variables and assuming that the average of the product of two state variables is approximately

equal to the product of the averages [117], for example in Eq. (87) above (Y2(t)) ~ ({(Y(t)))%.

However, due to the approximate nature of deterministic epidemic model and their impact of public health sciences,
it is important to go beyond the mere application of the mean-field limit, and to understand under which conditions
deterministic differential equations (whose state variables are continuous function of time) can safely be used in place of
the originary “exact” stochastic formulation of the epidemic process (whose state variables are time-continuous stochastic
processes taking integer non-negative values). Moreover, it is also important to have a feeling of the behavior of the system
at least in the regime of small stochastic deviations from the deterministic behavior.

If the total population size is small, birth-death stochastic epidemic models must be used. On the other hand, when
the size of the state variables becomes large (which is the case intuitively leading to the deterministic approximation), it is
hard to simulate the process due to the crowding of events. In such a case, however, one can use a system-size approxima-
tions [114,115]. This methodology allows approximating, respectively, the solution of a multivariate ME with a multivariate
Fokker-Planck equation (FPE) [114] (this approximate equation is sometime called Chemical FPE [114]). In turn, from the
obtained FPE one can derive a corresponding system of Stochastic Differential equations (SDEs) that approximate the dy-
namics of the state variables vectors. In physical chemistry it has been proposed a reverse equivalent approach, the Chemical
Langevin equation (CLE) [ 118], where first the approximating SDE system is obtained from the definition of the model, and
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only then the FPE is written. Namely, a spatially homogeneous system of particles/subjects with state variable u character-
ized by M “events” having probability a;(u)dt j = 1, ..., M can be approximated by the following system of SDEs [118]

u; = Z v,-,j(aj(u) + \/m j(t))’ (88)
J

where the ;(t) are M uncorrelated white noises, and v is the stoichiometric matrix where v;; € {0, —1, +1} depending on
the changes induced by the jth event into the ith state variable. Note that here the original state vector, whose components
were integer non-negative numbers, is approximated by a real vector.

For example, in the case of the SIR epidemic model, the CLE reads

, Y Y
X = —ﬂﬁx - El(t)\/;, (89)

Y Y
Y= BX =Y+ 60y X - £(0OVYY. (90)

Since N is constant, we can pass to the fractions (S, I)

1
ﬁ,/ﬁﬂ, (91)
I'= pSI -yl +sl(t)%\/ﬂ51 - &(t)%NW. (92)

As a consequence, in the limit N — +o00 we obtain the deterministic model.

It is interesting to note that the use of the force of infection FOI = BY leads, after passing to fractions, to a stochastic
term &;(t)+/B1SI which is not scaling as 1/W. and thus it does not disappear in the limit N — +o00. Moreover, note that
an hypothetical model where the contact rate is decreasing to 0 with the population size N, would yield the following trivial
uncoupled model of the type S’ = 0,1’ = —yI.

As stressed by a few authors among which Gillespie [ 118], the accuracy of the approximation given by Eq. (88) or by those
derived by the system-size expansion [ 114,115], depends on the fulfillment of specific conditions that are time-varying since
they are state-variable dependent. We can roughly summarize these conditions as follows: for all times a;(u)dt must be suffi-

ciently larger than ,/a;(u)dt. This in turn implies that all state variables must be sufficiently large. Thus the above mentioned
approximations require caution, since a rigori they are invalid even when only one of the state variables becomes small.

For the specific case of the SIR model, note that in the initial epidemic phase if one sets X(t) ~ X(0) ~ N the ensuing
stochastic process for Y (t) is linear and its mean is given by E[Y] = Y(0)Exp((8S(0) — y)t) as in the approximation
of the deterministic SIR epidemic model. The corresponding variance is Var[Y] = Y (0)(e®©@=1t — 1)/(8S(0) — ).
Of course, this approximation is valid for a relatively short time-interval. However, as Bartlett noted in his pioneering
work on measles [119], the most critical difference between deterministic and stochastic models arises in the intervals
between epidemics (for example during the undamped oscillations caused by periodic changes in the contact rate) when
the prevalence can become so small that extinction of the infective population almost certainly occurs in the stochastic
formulation also in presence of a large population while deterministic models (e.g. the periodically forced SIR and SEIR models
with vital dynamics) simply predict that system trajectories will be positive for all times. This is of relevance in presence of
vaccination because stochasticity may cooperate with the further reduction in prevalence caused by vaccination in inducing
infection elimination [120].

The study of stochasticity-induced infection extinction led Bartlett to introduce [119] the key concept of critical
community size (CCS). This is the (heuristically defined) threshold over which, in absence of vaccination, the infection is
likely to persist, and below which extinction is very likely. Over the CCS it is therefore safe to “read” the output of a
deterministic model as an average behavior. For example pre-vaccination measles data indicate a CCS in the region of
250,000-400,000 [119,121]. The CCS is only weakly associated to the BRN, while it is strongly dependent on the duration
of the infectious and latent periods. As for the latter, it was noted that simple stochastic models based on exponentially
distributed durations, tend to severely overestimate the CCS [121], while instead adequate predictions can be obtained by
resorting to more realistic, e.g. bell-shaped, distributions of the latent and infectious periods [121]. On the other hand, the
effect of space on the CCS is extremely complex [120].

Stochastic epidemic models are characterized by a range of interesting phenomena not shown in their deterministic
counterparts. The simplest is obviously stochastic extinction after importation, i.e. the fact that an infectious individual in-
troduced in a fully susceptible population has a probability of recovering before being able to infect anyone (given by 1/ R
(1/ Rg) [120]), in which case no epidemics will occur, unlike the deterministic model. Other stochastic effects are more
subtle. For example, in the SIR model with vital dynamics, the stochastic fluctuations of the total population N(t) around
its deterministic equilibrium (which can be approximated by the CLE: N’ = &,(t)/uN — &4(t)+/N), may transform the
damped oscillations around the endemic equilibrium of the corresponding deterministic model in sustained oscillations
[122]. This phenomenon, termed stochastic amplification, is an instance of the more general phenomenon of coherence reso-
nance [122]. The theoretical possibility of stochastically inducing the disease eradication with a limited amount of vaccines

§'= —pSI — &(1)
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via periodic delivery of vaccinations so that to induce resonances, and the related role of seasonal fluctuations of the con-
tact rates, are investigated in [ 123] by means of methodologies of the theory of fluctuation-induced population extinction.
Further details on the stochastic theory of epidemics can be found in the complementary books [124,125].

3.9. Space and beyond: mean-field metapopulations

Everytime a new epidemic focus appears, the first concern of public health is to assess whether this isolated focus will
remain localized or will spatially spread. This leads to a key missing dimension in the previous simple models, namely
space. The most straightforward way of modeling the geographical spread of infections is to add spatial diffusion to the
basic SIR and SEIR model [83,126,127], leading to equations that are analogous to the reaction-diffusion equations of
theoretical biochemistry [126,128]. This approach, which is proved useful to understand some basic aspects of spatial
epidemic behavior by using tools of reaction-diffusion theory, has obvious shortcomings. The first one is that human
beings have patterns of movement dramatically different from that of particles moving under Fickian diffusion [129,130].
This is a major complication leading to complex integro-differential equations where the diffusion part interacts with the
reaction part, i.e. transmission [131]. Moreover, human movement often includes rapid commuting between areas with
highly clustered population, such as cities [ 120,132].

To cope with the above problems, population ecology and mathematical epidemiology have increasingly used the
metapopulation, or multi-patch approach, where a large populations is split in a finite number of patches, for example
cities, where: (i) each city obeys its own deterministic “local” epidemic model, e.g. SIR-type; (ii) local dynamics are linked
through population fluxes, e.g. due to commuting for work. Commuting plays a fundamental role in the geographical
spread of infectious diseases in contemporary societies [120,132], by favoring the geographical spread and persistence of
infections through the interlink between patches. The multi-patch approach was used in the pioneering work by Baroyan
and Ravchev, who linked a large number of SIR epidemic models to simulate the spread of flu in URSS cities [127]. Multi-
patch epidemiological models have since then developed fast both on the theoretical and the applied side, e.g. for predicting
the world-wide spread of pandemic influenza [133-136].

As for the mathematical viewpoint, multipatch epidemic models show the same spatial phenomena we may observe
in traditional reaction-diffusion models, namely: (i) emergent phenomena such as the onset of spatial heterogeneities
by means of spatial instability of spatially homogeneous equilibrium points (Turing-like instabilities) or even of
limit cycles [137]; (ii) the onset of traveling waves and solitons, representing the spatial displacement of epidemic
outbreaks [120]; (iii) the emergence of various spatio-temporal asynchronous/synchronous complex patterns [120,138].
To these classes of phenomena, one has to add those induced by parametric heterogeneities between patches [120], which
might mirror heterogeneities in the epidemiology (e.g. in social contacts), public health interventions (e.g. in vaccine uptake),
demographics (e.g. population density and age-structure), as well as environmental (e.g. climate, temperature, etc.). As
regards the onset of Turing-like patterns is concerned, let us consider the following system [137] for an infection with m
epidemiological states (m = 4 for a SEIR system) spreading among n interacting patches. If patches are isolated, the local
spread is modeled by n m-dimensional ODE systems of the form uj/. = f(u;). In presence of linear population flows between
patches one has the following interlinked dynamical systems

n
=) + > cMus, (93)
i=1
where u; € R™ are the state variables associated to patchi,U = (uy, ..., u,) is the m*n matrix of all state variables, M is a mx

m diagonal matrix reporting the different mobility coefficients of individuals in the different epidemiological compartments
(e.g. the mobility of infectious subjects might be reduced with respect to that of susceptible and removed [127]), € is the
n * n connection matrix whose elements are the transmission rates between individuals of different patches.

A spatially homogeneous solution of Eq. (93) is one such that in all the patches the state vector is the same u; = s(t), with
s(t) € R™. Linearizing around the spatially homogeneous solution and applying some similarity transformation one gets the
following n independent systems in C™ [137]

¥ = Df(s(t)) + M) Y, h=1,...,n, (94)

where A, are the eigenvalues of the connection matrix C. Eq. (94) is the discrete equivalent of the linearization equation
arising in the study of the Turing bifurcation [126]. Notably, this methodology can also be applied in the case of nonlinear
population fluxes [137].

Among multi-patch models, a fairly well-studied class is represented by the following multi-group, cross-coupled SEIR
model ([137] and refs therein) in a constant population

n
S/ =n1=S) =S _ Bl (95)
j=1

n
E =5 Bili— (n+a)E, (96)
j=1
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Il =oal — (u+ ), (97)
Ri=1-—S —FE—1. (98)

Unlike Eq. (93) where all contacts are local, through inter-patch movements, in Eq. (95) fluxes between patches are
disregarded on the rationale that movements from own patch to other patches are short-lasting. The core of the description
stands in the spatial transmission matrix B; assigning the per-capita rate at which a susceptible from patch i is infected
by an infective individual belonging to patch j regardless of the patch where the at-risk contact occurred [120,137,139].
For Eq. (95) fairly general results are available, including a decoupling equivalent to those of Eq. (94) [137]. In particular,
Eq.(95)was used to study the conditions under which the local (i.e., in each patch) oscillations of SIR and SEIR models become
synchronized [137,139], as observed for measles in UK cities in the pre-vaccination era [92]. Notably, synchronization of
unforced SIR and SEIR models arises at very low levels of patches connection, while seasonal forcing, besides inducing
complicate behavior, allows maintenance of some phase differences in local dynamics [139], and yields more plausible
prevalence levels at the inter-epidemic intervals compared to the simple SIR and SEIR models.

Introduction of vaccination can have a complex impact on the spatio-temporal dynamics of multi-patch systems [120].
For example metapopulation models can explain the observed de-correlation observed in the time-series of UK major cities
after the introduction of measles vaccination [92,140].

3.9.1. Large scale meta-population networks

In very recent times, the increasing availability of data on both the spread of infectious diseases and human movements
is allowing to finely model the dynamics of outbreaks on larger and larger scales, even world-wide [133]. This has led to a
number of investigations on the role of the topology of the networks of inter-patches contacts as resulting from population
mobility [ 141]. These analyses have shown that though the condition Ry > 1 still guarantees that the epidemics is not self-
extinguishing and that there are patches here and there in the network where the infection is circulating, in order to have
global macroscopic spread a second threshold has to be overcome [ 141,142]. This second threshold, larger than the first one,
depends both on population mobility and on the topology of network. Not surprisingly, if the network is heterogenous, i.e. its
degree distribution P(k) (which summarizes the probability for a node of the underlying graph of having k links to other
nodes of the networks) has a heavy tail, global epidemic spread is easier. However, for very large heterogeneous network
structure the second threshold is close to the classical one, quite independent of population mobility. This can have profound
implications as it implies that measures aimed at limiting international mobility to reduce infection spread might have little
impact.

3.9.2. Metapopulation models beyond space: social and age-specific heterogeneities

Multi-group and metapopulation models are one of the most active and effective fields of investigation in the theoretical
epidemiology of infectious diseases, as they lato sensu represent a convenient framework for modeling a much wider
class of epidemiological phenomena than geographical spread only. This has been done by straightforwardly extending
the interpretation of patches to different types of internally homogeneous groups, such as social groups, age groups, etc.,
still relying on appropriate contact or transmission matrix, having elements g; ; reflecting heterogeneous contact patterns
between social or age groups. Though the first works in the field were following a more mathematical vein, i.e. the need to
remove the homogeneous mixing hypothesis, the public health modeling revolution described in Section 3.1 is much the
legacy of this intuition. Indeed, the multigroup SIS model analogous to the SEIR model of Egs. (95)-(98) [137], first introduced
by Lajmanovich and Yorke [143] to model the spread of an infection among societal groups with different social/sexual
behavior, and later extended to model gonorrhea transmission in the US [78], has represented the departure point for the
explosion of studies on the modeling of sexually transmitted infections that was subsequently triggered by the onset of the
HIV/AIDS epidemics in the early eighties. Noteworthy extensions of Ref. [ 143] to heterogeneous networks of contacts are
available in [ 144-146].

On the other hand, in the field of common childhood infections, such as measles and pertussis, the large availability of age-
specific infection data triggered the development of the “standard” age-structured model [77,79,81]. The “standard” model
is nowadays extensively used to investigate the nonlinear effects of mass vaccination programs, including the complicate
patterns of increase in the average age at infection following the reduction in transmission, and the related perverse increase
in the number of cases of serious disease, as it may be the case for rubella, measles and varicella [77,79,81]. The key
ingredient of the “standard” model is represented by the age-specific transmission matrix of elements g; j, representing the
per-capita transmission rates in contacts between individuals of different age groups. In a first phase these matrices were
computed by resorting to simplifying hypotheses about contacts patterns between age groups, aimed to reduce the number
of unknowns in the 8; matrix from n? to n, thereby making them identifiable from standard age-specific epidemiological
data. These approaches include the so-called Who Acquires Infection From Whom (WAIFW) matrices ([79] and refs therein),
and the proportionate and preferred mixing hypotheses ([81] and refs therein). Recently, considerable advances were made
thanks to studies aimed to directly observe population contact patterns [ 147-150], or to reconstruct them from official data
[151,152].

Apart the anagraphical age of subjects, two other chrono-biological variables impact on the in-population dynamics of
infectious diseases. The first is the so called age since infection [153], which is the time elapsed from the infection, a key
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factor modulating both the contact rate of infected subjects, the disease duration and the disease-related risk of death.
Quite remarkably, this variable was first introduced in mathematical epidemiology by Kermack and McKendrik in their
1927 paper [68], but later ignored for decades [153]. The second is the age since vaccination [154,155], which is the time
elapsed since the vaccine inoculation, and which modulates both the vaccine-induced immunity [ 155] and the occurrence
of vaccine-related side effects [ 154]. Note that if any of these temporal variables is modeled as a continuous variable, then the
resulting model, due to the impact of these variables on the contact rate and other parameters, is not differential multi-patch
but integro-differential, as in the seminal work [68].

Finally, a number of recent re-assessments of the main future challenges for multi-group and metapopulation studies
can be found in [156-159].

4. Basic concepts and methods in (non-behavioral) epidemiological modeling and vaccination: network models

A real population is mix of heterogeneous individuals and the heterogeneity exists in several aspects, especially in
contacts. The foundations of epidemiology and early epidemiological models were based on population wide random-
mixing, which was well described in the last section. However, in practice, each individual has a finite set of contacts or
individuals whom they can pass the infection. The ensemble of all such contacts forms a network. Structural pattern of this
contact network among individuals allows models to compute the epidemic dynamics at the population scale from the
individual-level process of spreading infections.

In the recent years, overwhelming data explosion in human sciences shows complex and heterogeneous connectivity
patterns in a wide range of biological and social systems. Network theory provides a natural gateway to understand all
these complex patterns. Ideas from network theory have also inspired research in many fields to study interactions between
elements and their dynamics in areas like computer science, system biology, social sciences, economic and statistical
physics. However, epidemiological study has also used potentiality of network theory like any other scientific disciplines.
The complex properties of networks have a profound impact on studying equilibrium and non-equilibrium phenomena in
epidemic processes. Dated back to mid-eighties, the researchers have shown that understanding the spreading process of
an infection have considerable overlap with the studies of network properties [ 150,151]. The group of individuals and their
connections in a population naturally defines a network in which disease spreads from one node (individual) to another
distantly related node. So, insights from topological structure of the underlying network provides useful information that
helps predicting spreading process including growth of infection at the first stage and subsequently its distribution over the
entire contact network.

Although it has long been acknowledged that network theory is the key ingredient of epidemic modeling, recent
abundance of data exemplifies the huge complexity in the spreading and persistence of infection in a population and thus
calls for detailed theoretical understanding of the interplay between epidemic processes and networks. Previous works have
shown that most real-world networks exhibit dynamic self-organization and are statistically heterogeneous—typically all
marks of complex systems [ 160-168]. A regular lattice rarely represents the real-world networks of relevance for epidemic
spreading. In a real population, there are few individuals that may act as hubs (or ‘super-spreader’), whereas the majority of
the population have very few interactions. Both social and infrastructure networks are organized in communities of tightly
interconnected nodes of individuals [169]. Although randomness in the connection process of nodes is always present,
organizing principles and correlations in the connectivity patterns define network structures that are deeply affecting
the evolution and behavior of epidemic and contagion processes [144,170-172]. Furthermore, the complex features of
networks often find their signature in statistical distributions which are generally heavy-tailed, skewed, and varying over
several orders of magnitude [173]. The evidence of large-scale fluctuations, clustering and communities characterizes the
connectivity patterns of real-world systems; and this has prompted the need for mathematical approaches capable to deal
with the inherent complexity of networks.

However, the connection between infectious disease epidemiology and the network theory goes far beyond the general
discussion. Understanding network topology may help identifying disease transmission routes, which may help designing
strategies to control the disease. For instance, ‘contact tracing’ is a very powerful public health strategy during first phases
of the spreading process. It relies on underlying transmission routes to control further spread without even any information
on epidemiology of the infectious disease [166]. Thus studying network theory and how it can be applied to relate the
infection spreading process may be a vital tool for understanding the disease and, designing control strategies. With a
discussion of basic network metrics and topologies, here we review the development of current research at the interface of
epidemiological studies and network theory including immunization to control the disease.

4.1. Networks: types and topologies

4.1.1. Definitions and notations

Graph theory [174] can be used to mathematically formalize networks [168]. A graph is a collection of points, called
vertices (or nodes), and a set of connections, called edges (or links). Edges indicate link between vertices, representing the
presence of an interaction or relations between those vertices. Interaction can be bidirectional which defines undirected
networks, or it can be directional which defines directed networks or digraphs. We represent a graph of size N (say, with N



Z. Wang et al. / Physics Reports 664 (2016) 1-113 25

vertices, and L links) using N x N adjacency matrix A, with elements a; = 1if an edge is connecting nodes i and j and zero
otherwise. A is symmetric matrix in undirected graphs, and asymmetric in directed graphs.

e Degree and Degree distribution: The degree (or connectivity) k; of vertex i in an undirected network is the number of
edges emanating from i, i.e. k; = ZJ- a;;. In the case of directed networks, we have both in-degree, k™, and out-degree, k°',
as the number of edges that end in i or start from i, respectively. The total degree, however, in directed network is defined
by ki = k™ 4 k°'. The degree distribution P(k) of a network is the probability that a randomly chosen vertex has degree k.
In a finite network, it denotes the fraction of vertices with degree exactly equal to k. In case of directed networks, there are
instead two different distributions, the out-degree P°"t(k°"*) and the in-degree P'" (k") distributions, though in-degree and
out-degree of a given vertex might not be independent. It is also useful to consider the moments of the degree distribution,
(k") = 3", k"P(k). The first moment (k) = 2L/N is called the average degree, provides information about the density of the
network. The degree distribution defines classes of networks with similar statistical features. A network is called sparse if its
number of links L grows at most linearly with the network size N; otherwise, it is called dense. In directed networks, since
every edge contributes to one node in-degree and other node out-degree we have that (k") = (k°Ut).

¢ Connectedness, Shortest path length, and Diameter: A path P; , is a sequence of different edges (ij, ij+1),j =0, ...,n—1,
connecting vertices iy and i,; the number of edges traversed, n, is also called the length of the path. A graph is connected if
there exists a path connecting any two vertices in the graph. A component € of a graph is defined as a connected subgraph.
The shortest path l; between two nodes i and j is defined as the length of the shortest path (though may not be unique)
joining i and j, and the average shortest path length (I) is the average of the value of I;; over all pairs of vertices in the network.
The diameter of a network is the maximum value of all the pairwise shortest path lengths.

o Degree correlations: The degree correlation between two vertices is defined as the conditional probability P(K'|k) that an
edge departing from a vertex of degree k is connected to a vertex of degree k' [144]. A network is called uncorrelated if this
conditional probability is independent of the originating vertex k. In this case, P(k’|k) can be simply estimated as the ratio
between the number of edges pointing to vertices of degree k', k'P(k')N /2, and the total number of edges, L = (k)N/2, to
yield P""(k'|k) = k'P(k")/{k). The most popular measure of degree correlation is Pearson correlation coefficient r. Proposed
by Mark Newman [175,176], the degree correlation coefficient is defined as

Jjk(ex — qiqk)
r= Z J<02 L (99)
jk

where

2
o= ZszIk - |:Z qui| .
k k

e;; is the degree correlation matrix that represents the probability of finding node with degrees i and j at the two ends of a
randomly selected link, and g is the probability that there is a degree-k node at the end of the randomly selected link. The
degree correlation varies between —1 < r < 1. For instance, r > 0 the network is assortative, for r = 0 the network is
neutral and for r < 0 the network is disassortative. In reality, social networks are assortative, whereas technological and
biological networks are disassortative [176]. For example, for the scientific collaboration network we obtain r = 0.13, in
line with its assortative nature; for the protein interaction network r = —0.04, supporting its disassortative nature and for
the power grid we have r = 0. Another related measure of correlations is the average degree of the nearest neighbors of
vertices of degree k, denoted by k,,(k) which is formally defined as [144]

knn(k) = > KP(K|k).

K

o Centrality and Betweenness: The concept of centrality encodes the relative importance of a node inside a network.
Together with the degree and the closeness of a node (defined as the inverse of the average distance from all other nodes),
another standard measure of node centrality is node betweenness, which is obtained by counting the number of geodesics
going through it. More precisely, the betweenness b; of a node i, sometimes referred to as load, is defined as

by = ke (©) (100)
jkenjzk Tk

where nj, is the number of shortest paths connecting j and k, while ny (i) is the number of shortest paths connecting j
and k and passing through i. Betweenness distributions have been investigated in [177-184]. Betweenness-betweenness
correlations and betweenness-degree correlations have been studied respectively in [185] and in [186]. The concept of
betweenness can also be extended to edges. The edge betweenness is defined as the number of shortest paths between pairs
of nodes that run through that edge [187].

o Clustering: Clustering refers to transitivity property of the network, i.e. the relative propensity of two nodes to be
connected, provided that they share a common neighbor. The clustering coefficient C is defined as the ratio between the
number of loops of length three in the network (i.e. triangles), and the number of connected triples (three nodes connected
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by two edges). An alternative definition is also available by Watts and Strogatz [188]. A local measure ¢; of clustering is
defined as the ratio between the actual number of edges among the neighbors of a vertex i, e;, and its maximum possible
value, measuring thus directly the probability that two neighbors of vertex i are also neighbors of each other. The mean
clustering of the network (c) is defined as the average of c; over all vertices in the network. The clustering spectrum c (k) is
defined as the average clustering coefficient of the vertices of degree k [185,186], satisfying (c) = Y, P(k)c (k).

o Community Structure: A community or cluster (or cohesive subgroup) of a given network of vertices N and set of edges L is
a subgraph G'(N’, L"), whose nodes are tightly connected, i.e. cohesive. Since the structural cohesion of the nodes of G’ can
be quantified in several different ways, there are different formal definitions of community structures.

A related terminology of community structure of a network is clique. A clique is a maximal complete subgraph of three
or more nodes all of which are adjacent to each other, and such that no other nodes exist adjacent to all of them. This
definition can be extended by weakening the requirement of adjacency into a requirement of reachability: a n-clique is a
maximal subgraph in which the largest geodesic distance between any two nodes is no greater than n. A detail description
is given in [162,189].

4.1.2. Type of networks
Based on the qualitative and quantitative features of the degree distribution, the networks can be classified into a series
of important types of networks, which are also useful for the epidemiological applications.

e Random graph: The simplest network model is the classical random graph model proposed by Erdés and Rényi (also
named ER graph) [190,190-192]. Arandom graph model G, (N) is constructed from a set of N nodes in which each one of the
N(N—1)/2 possible links is present with probability p. The degree distribution is given by a binomial form, which, in the limit
of constant average degree (i.e. p = (k)/N)and large N can be approximated by a Poisson distribution P(k) = e~ (k) /k!.
The clustering coefficient is given by (c) = p, and the average shortest path length is (I) ~ log N/ log(k) [193]. This model is
therefore adequate in the case of networks governed only by stochasticity, although G,(N) tends to a regular graph for large
N and constant p. Extensions of the basic model to allow for other degree distributions lead to the class of models known as
generalized random graphs, random graphs with arbitrary degree distributions and the configuration model [ 194].

e Small-world (SW) network: A more sophisticated and tractable model of a network with small proximity and high
clustering coefficient is the small-world network model proposed by Watts and Strogatz (i.e. WS model) [ 173]. This network
model is based on rewiring procedure of an ordered lattice. The initial configuration starts with a ring of N vertices, each
one of which symmetrically connected to its 2m nearest neighbors. This represents the model with a structure which has
large clustering coefficient and large average shortest path length. Starting from it, a fraction p of edges in the network are
rewired, by visiting all m clock-wise edges of each vertex and reconnecting them, with probability p, to a randomly chosen
node. There is another version of the model proposed by Monasson [195], where a fraction p of edges are added between
randomly chosen pairs of vertices. The overall effect of the rewiring processes is to add long-range shortcuts, that, even for
a small value of p ~ N — 1, greatly reduce the average shortest path length, while preserving a large clustering for not
very large values of p. This model, although better suited for social networks with high clustering coefficient, has a degree
distribution and centrality measures decaying exponentially fast away from the average value. The small-world model thus
generates homogeneous networks where the average of each metric is a typical value shared, with little variations, by all
nodes of the network.

e Scale-free (SF) network—static and dynamic: In contrast to random graph, and small-world network models, real-
world networks are structured in a hierarchy of nodes with a few nodes having very large connectivity (the hub nodes),
while the vast majority of nodes have much smaller degrees. In precise, these heterogeneous networks exhibit heavy-tailed
degree distributions often approximated by a power-law behavior of the form P(k) ~ k=%, which implies a non-negligible
probability of finding vertices with very large degree. The degree exponent ¢ of many real-world networks takes a value
between 2 and 3. In such cases, these network models are called scale-free. Several variations of the classical random graph
models have been proposed in order to generate networks with a power-law degree distribution. For example, configuration
model [177,196,197], fitness model by Caldarelli et al. [ 198], threshold graph model by Masuda et al. [ 199] and gradient network
models by Toroczkai and Bassler [200], where directed graphs induced by local gradients of a scalar field distributed on the
nodes.

So far, we have not discussed evolution process of these scale-free networks, i.e. nodes and links do not change over
time. There are many examples of real networks in which the structural changes are ruled by the dynamical evolution
of the system. Most well-known and useful evolving network model is Barabdsi-Albert model [201]. The Barabasi-Albert
(BA) network is a model of network growth inspired to the formation of the World Wide Web and is based on two basic
ingredients: (i) growth (of nodes) and (ii) preferential attachment (connection of vertices). A description of the growth
process and attachment function is discussed in [202]. Variations in preferential attachment function produced several
other evolving network models like Dorogovtsev-Mendes-Samukhin (DMS) model (linear preferential attachment), Krapivsky
model (nonlinear attachment probability), etc. [203]. The Barabasi-Albert (BA) model has been generalized further by the
same authors, and also by others including certain characteristics of underlying growth process of nodes [202].

e Weighted networks: In the real world settings, many networks exhibit varied intensity of connections. For example,
social network, where existence of strong and weak ties between individuals are seen [204-207], metabolic reaction
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Fig. 8. Schematic illustration of age-dependent contact networks into a multilayer system. Network with different color shades in (a) indicates network of
individuals in the same age group, where network in gray region denotes connections across different age groups. Blue lines point to the same individuals
from colored regions to gray region. (b) The same network can be conceived as multilayer networks. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 1

Definitions, measure and expressions of network properties of single-layer and multilayer networks.
Definition Single-layer networks Multilayer networks
Notation G =(N,L) M= (4, C)

layers: § = {§o 1 € {1,..., M}, o = (Xo, &)
links between layers: € = {€y, C Xo X Xy;a € {1,..., M}, a # @}*

Degree & Centrality degree: k; = ngw ajj _ degree: k; = (klm, o k[[M]), k,[“] = Zj ag
betweenness: b; = 3, .y iz n{:_:) overlapping degree: 0; = 224:1 kl[o’]
degree correlation coefficient degree correlation coefficient ¢; = (cim, e ci[M ])
G = %, Yiew GG

Clustering coefficients G = % Cyu (i) = %

Characteristic path length m Zi.je,/\/,i#j djj m Zu.vexM,u#U duy

2 «a, ¢ denote layers in multilayer networks.

pathways, predator-prey interactions in food webs [208,209], different capabilities of transmitting electric signals in neural
networks [210], unequal traffic on the Internet [211] or of the passengers in airline networks [212]. These types of complex
systems can be explained with model networks in which each link carries a numerical value measuring the strength of
the connection. Considering weights of the connections puts another dimension of complexity in the topology of weighted
network. Similarly, we can also have networks with weighted nodes. Detail descriptions of the measuring and modeling
weighted networks has been discussed in [162].

There are also other type of networks, which are important to study real world phenomenon. These networks include
spatial network (whose nodes occupy a precise position in two or three-dimensional Euclidean space, and whose edges are
real physical connections) [213-216], adaptive networks [217], temporal or time-varying networks [218-220] (for more
details, please also see Section 11).

All the previous networks are single-layer. But there are many real world complex systems that can be conceived as
multiple layers of such single networks. Most complex systems from physical, social, engineering, information and biological
sciences include multiple subsystems and layers of connectivity, and they are often open, value-laden, directed, multilevel,
multicomponent, reconfigurable systems of systems, and placed within unstable and changing environments. An example of
multilayer networks conceived from age-dependent contact network is shown in Fig. 8. The recent development of multilayer
networks in network theory provides radical views of understanding these multilayer systems. For more information about
single-layer and multilayer networks, please see the comparison in Table 1. Descriptions and examples of more different
type spatial and multilayer networks are given in [202].

4.2. Epidemic spread over networks

Most infectious diseases such as influenza, SARS, HIV spread through human populations by physical contact between
infective and susceptible individuals. The pattern of these disease-causing contacts forms a network, which has substantial
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influence on success of the spreading process. The traditional epidemic models such as classic SIS or SIR epidemic models
do not explicitly incorporate the topological structure of the underlying contract network that facilitates the spread of
a pathogen. Instead they assume that any individual can come into contact with any other individual (homogenous
mixing hypothesis) and so all individuals have comparable number of contacts. It also assumes that probability of disease
transmission is same across all individuals in the network. Both of these assumptions are limited in most of the diseases: in
reality an individual can transmit a pathogen only to those it comes into contact with and also transmission occurs in varied
probabilities. Hence pathogens spread can be assumed on complex contact networks.

Spreading epidemics on complex networks has been studied by many researchers including May and Lloyd [221]. Most
detail and systematical study is done by Newman [222]. Considering an SIR model with uniform recovery rate y, i.e. where
infected nodes become removed at rate y after infection, and infection rate 8;. Then the transmissibility T is defined as the
probability that the infection will be transmitted from an infected node to a connected susceptible neighbor before recovery
takes place. For continuous-time dynamics, the transmissibility computed as [222]:

T=1-lim(1- Bist)/t =1—e7h, (101)

In general, B; and y will vary between individuals, and assume initially that these two quantities are independent
and identically distributed (iid) random variables chosen from some appropriate distributions P(8;) and P(y). Hence,
transmission of the disease between two individuals is simply the average T (i.e. homogeneous case) of T; over the
distributions P(f;) and P(y ), which is

T=(Tj)=1- / P(BIP( e PdBidy. (102)
0

Computing threshold transmissibility for spreading the disease in a special non-degenerate case of SIR model has been
discussed in [223].

Now, starting from a single infective individual, disease spreads across the contact networks and a outbreak occurs.
The ultimate size of the outbreak would be precisely the size of the cluster of vertices that can be reached from the initial
vertex by traversing only occupied edges (i.e., edge in the graph across which the disease is transmitted, say with average
probability T). This is precisely a similar model equivalent to a bond percolation model with bond occupation probability T
on the graph representing the community. The connection between the spread of disease and percolation was in fact one of
the original motivations for the percolation model itself. Below in the next subsection, we discuss how disease spread can
be realized as the percolation problem on random graphs with arbitrary degree distributions discussing size of outbreaks,
presence of an epidemic, transmissibility thresholds, etc.

4.2.1. Percolation theory and spreading process

Like mean-field method (mentioned in Section 3), which is a useful tool to analyze the transmission dynamics in
homogeneous mixing population, percolation theory also plays a significant role in prediction of epidemic or vaccination
dynamics, such as emerging threshold and phase transition, in network population. One convenient universal approach to
deal percolation problem with bond occupation probability T on complex networks is considering generating functions [222].
Generating functions and the problem of percolation in networks have been discussed in many earlier studies [ 177,224-226].
We define generating functions Go (1) and G;(u) to describe a network as follows:

Go(w) = Y _ Py, (103)
k=0
_ G
G = 25 (104)

where P (k) is the degree distribution of random graph G with N vertices. We can calculate back the degree distribution P (k)
and also all the higher moments using Gy (1) with

n n d "
(k") = Xk:k P(k) = [(u@) Go(u)]u_l. (105)

G calculates the distribution of the degrees of vertices reached by following a randomly chosen edge. A modified set
of generating functions is required to solve percolation problem with bond probability T: Go(u, T) and G;(u, T), where
Gi(u,T) = Gi(1+ (u— 1)T) [227,228]. G;(u, T), i = 0, 1 represents the distributions of the number of occupied edges
attached to a vertex, as a function of the transmissibility T.

Outbreak size of a disease on a network precisely depends on the distribution of sizes of clusters of vertices together by
occupied edges in the corresponding percolation model. Using the generation functions Go(u, T) and G;(u, T), we can find
the mean outbreak size (s) in closed form as

Gy(1;T)

<S>:1+71—G/1(1;T)'

(106)
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Table 2
Epidemic thresholds for SI, SIS and SIR models over Erdos and Rényi (ER) and Scale-Free (SF) networks.
Model type Model expression Characteristic time (t.) Spreading rate (.)
dip _ ; . (k) .
SI G = Bil1 — ik (O ]K6 () SF(¢ = 3): 502 1) SF(¢ > 3):0
SF(¢ <3):0 SF(¢ <3):0
. 1
ER: o
dip, _ P P . (k) (k)
SIS & = Bl — i1k (t) — yik () SF: m @
ER: Bk +1)—y (k)+1
SIR B = Bise(DA() — Yir(D) T o

(Br(k2)—(y+B1) (k) (k2)— (k)
sk(t) = 1 —ik(t) — 1ie(t)

ix: infected nodes with degree k.

sk: susceptible nodes with degree k.

ri: recovered or immune nodes with degree k.

6 fraction of the neighbors of node k that are infected.

B, transmission rate.

y: recovery rate.

¢: degree exponent SF network.

So, given the values of generating function G;, we can completely evaluate this expression to get the mean outbreak size
for any value of T and degree distribution. The outbreak size critically depends on the relation TG/ (1, T) = 1. This point
indicates the onset of an epidemic; it is the point at which the typical outbreak ceases to be confined to a finite number
of individuals, and expands to fill significant fraction of the graph. This defines the critical transmissibility T, at which the
critical transition occurs

e ;kP(k) W
TG () Y k(k—1)P() (k2 — (k)
k

T, (107)

For T > T, we have an epidemic, or “giant component” in the language of percolation. This equation is valid for degree of
uncorrelated networks which have no loops in the clusters. However, in the case of heterogeneous networks with degree
distribution P(k) ~ k¢, it was found that the percolation threshold tends to zero for ¢ < 3 in the limit of an infinite network
size N — o0 [225]. That is, an epidemic can spread in this network regardless of how small the infection probability and how
quick is the recovery process. In general, the expansion of the generating functions around the nonzero solution yields the
scaling behavior of the order parameter in the vicinity of the critical point: Pg(T) ~ (T — T,)fic, where the critical exponent
Bi. assumes following values

1/3—-¢) for ¢ <3,
Bie=11/(¢—=3) for 3 < <4, (108)
1 for ¢ > 4.

For the case ¢ = 3, a stretched exponential form P;(T) ~ e'/? is expected. For more details about disease thresholds, we
provide a brief summary in Table 2.

There are other approaches of modeling spreading process of infectious disease over networks such as Degree-based
mean-field theory (DBMF) and Individual-based mean-field theory (IBMF). DBMF considers the dynamics of node of degree
k to be infected or remain susceptible, and assume that all the nodes with degree k are statistically equivalent. The value
of the epidemic threshold can be obtained by means of a linear stability analysis [144,223]. It was the first approach to
the study of the SIS model in complex networks [170]. Global stability of the disease-free state in such model, the role of
seasonal oscillations and the coexistence of an endemic equilibrium state via multistability have been investigated in [ 146].
In contrast, the state of the system in the disease model (such as SIS) in the IBMF framework is fully defined by a set of
Bernoulli random variables X;(t) € 0,1 : X;(t) = 0 for a healthy, susceptible node and X;(t) = 1 for an infected node;
altogether it defines a 2V Markov chain for a network with N nodes [227,228], which specifies exactly the time evolution of
the disease model. However, the Markov chain approach complicates analytical calculations of the model. A discussion on
both DBMF and IBMF can be found in [229].

4.2.2. Disease spreading in multilayer networks

In many situations, disease spread can be modeled over interconnected networks instead of a single-layer network (or
called monoplex network). For example, spreading of an infection amongst groups of communities, or even groups of
individuals of different age profiles Fig. 8. Studying the diffusion of pathogens over interconnected network or multilayer
networks has got very recent attention in epidemiology. Multilayer networks are made of multiple layers, where each
layer is a monoplex network, where the same nodes can appear in multiple layers and nodes on different layers can be
connected to each other. One important aspect of spreading infection across multilayer networks is that it can also spread
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from one layer to another. Generally, there are three possibilities for spreading process [230,231]: same-node, inter-layer,
when infection switches layer but remains on the same node, e.g., when an infected individual travels from one city to
another city; other-node inter-layer, when infection continues spreading to another node in another layer, e.g., spreading
of infection between individuals in different age profiles through direct physical contact. In third type, other-node intra-
layer, when infection spreads across the same community. In the context of interacting spreading processes in multilayer
networks, two types of thresholds have recently been introduced, called survival threshold measuring if infection will survive
and absolute-dominance threshold indicating whether it can completely remove another competing process [230].

Most of the works on modeling the dynamics of diffusion over multilayer networks have used epidemic models such as
SIS, SIR [202,231-240]. In a similar approach with single-layer networks, the dynamics of epidemic spreading according to
the SIS and SIR models over multilayer networks are described as a two- or three-state process, respectively. Thereafter,
many extensions have been applied to SIR and SIS models. One of the most important extensions, Goldenberg et al. [241]
proposed a discrete-time version of the SIR model called Independent Cascade Model (ICM), where time proceeds in discrete
time steps. In this model, each infected node u at time t can infect each of its neighbors. If the infection succeeds, then
neighbor v will become infected at step t + 1. ICM is often used in the literature on influence spreading. In [230], the authors
extended this model to analyze the dynamics of multiple cascades over multiplex networks.

Unlike a monoplex network, the infection may diffuse over inter- and intra-layer connections at different speeds over
multiple networks, meaning that we may have different infection rates (i.e., transmissibilities) across the links of each
layer and also the links between the layers. Therefore, most of the works on spreading processes over multilayer networks
[233,238,239,242-247] have extended epidemic-like models by considering different infection rates dependent on the
types of the layers. A recent contribution in this context proposed a generalized epidemic mean-field (GEMF) framework,
which was capable of modeling epidemic-like spreading processes with more complex states in multiplex network layers
(compared to two or three states in the SIS and SIR models).

4.2.3. Simulation-based models

Simulation-based modeling, like analytical models described above, has similar appeal in epidemic theory [ 173,248-254].
There are many good examples of simulation based network models of infectious diseases such as sexually transmitted
diseases (STD) that highlight the importance of network structure (e.g., role of core groups or interconnected individuals
with a large number of contacts) in disease transmission and persistence [255-263].

There are several simulation-based works that attempt to model airborne disease outbreaks [252,264,265]. Such models
consider large population, like of order ~10° with certain specified social connections among individuals. The networks used
are generated by computer simulation to conform to several observed demographic and social characteristics such as given
age distribution, household size, public crowding. Variable activities in the entire day are also assigned to the individuals
such as working place, public gathering, or even spending time at home. Different activities reflect the change in contact
pattern in different time of the day. Children are assigned to school, day-care center or play group where they interact
(and therefore form connections) with other children. The simulation model puts emphasis particularly on transmission
within households and family groups, which are probably the main routes of transmission for this disease. There are
models that attempt similar tasks, using census data to determine interaction patterns estimating demographic and disease
parameters [249]. Despite the number of approximations involved, the inherent stochasticity of such microsimulations
allows a direct estimation of the variability between epidemics. For example, Meyers et al. [250] generates a network model
to characterize the spread of SARS in Vancouver, British Columbia. They have used census data of Vancouver and using
computer simulations generated a plausible contact network that reflects an urban setting. They had chosen N = 1000
households at random from the Vancouver household size distribution, which yields approximately 2600 people. Household
members were given ages according to the census data of Vancouver. Kids were then assigned to schools according to
school and class size distributions to occupations according to (un)employment data, to hospitals as patients and caregivers
according to hospital employment and bed data, and to other public places. Within each location then random connections
were created among individuals with variable probabilities at households, hospitals and schools, workplaces, and other
public places. They have also chosen the parameters of the Poisson and power law networks so that all three networks
share the same epidemic thresholds. Conventional epidemiological models shows clear threshold effects, that is, the disease
is expected to die out when transmission probability falls below a critical threshold level. Olinky and Stone [266] have
shown that epidemic propagation depends equally on the infection process and also on the network topology. Their recent
analyses of infection processes on highly heterogeneous networks (e.g., scale-free networks) concludes that diseases spread
and persist even for vanishingly small transmission probabilities.

However, network-based simulation models have certain pitfalls as well. As mentioned by Keeling and Eames [267],
these models are limited to ascertain the sensitivity of the epidemiological results to the details of the network structure.
For example, the study by Halloran et al. [264] may be limited to answer questions like whether the network is representative
of an average American community, whether variation between communities will bias the results if large population sizes
are considered and whether rare but epidemiologically important contact structures are missing from the network. It is
difficult to answer such questions or gain an intuitive understanding of network structure if our experience is limited to
simulations of sampled networks. However, a range of idealized networks and analytical tools have been developed that
can reveal the elements of network structure, which are important determinants of epidemic dynamics.
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4.3. Vaccinations over networks

Designing optimal vaccination strategies to prevent and control infection has been widely addressed in the epidemic
modeling of infectious diseases. Vaccination over networks can be modeled as a site percolation problem [268]. Each
vaccinated node can be regarded as a site which is removed from the network. The goal of the vaccination process thus
is to reduce the transmissibility and pass the percolation threshold, which leads to minimization of the number of infected
individuals in the network. Thus implementing the SIR model and vaccination can be considered as a site-bond percolation
model, and the vaccination is considered successful if the network is below the percolation threshold [268,269]. However
though, the epidemic threshold decreases with the standard deviation of the connectivity distribution in the heterogeneous
networks [ 144,170,270]. This feature is paradoxically amplified in SF networks that have diverging connectivity fluctuations.
In fact, epidemic processes in SF networks do not possess, in the limit of an infinite network, an epidemic threshold below
which diseases cannot produce a major epidemic outbreak or the inset of an endemic state. SF networks are, therefore, prone
to the spreading and the persistence of infections, whatever virulence the infective agent might possess. In view of this, it
becomes a major task to public health policy makers designing optimal vaccination strategies oriented to minimize the risk
of epidemic outbreaks on networks such as SF networks. However, population with heterogeneous connected networks may
take different paths to extinction and thus control of infection. A recent paper by Hindes and Schwartz (2016) discussed such
issues on heterogeneous random networks under various configuration [271].

The simplest hypothetical way to experiment the effect of vaccination over networks is the random introduction of
immune nodes in the network population, in order to get a uniform vaccination density [270,272]. Immune nodes cannot
become infected and, thus, do not transmit the infection to their neighbors. In this case, for a fixed spreading rate §;, the
relevant control parameter is the immunity x, defined as the fraction of vaccinated nodes present in the network. At the
mean-field level, the presence of uniform vaccination will effectively reduce the spreading rate §; by a factor (1 — x);
i.e. the probability of finding and infecting a susceptible and non-immune node. In homogeneous networks, such as the
Watts-Strogatz (WS) model, it is easy to show that in the case of a constant §;, the critical vaccination rate x, is given by

X =1— @ (109)
Bi
Thus, the critical vaccination that achieves eradication is related to the spreading rate and the epidemic threshold of the
infection, which implies that the critical vaccination allows the complete eradication of the disease over the network.

However, in an heterogeneous population with a uniform vaccination scheme, it is necessary to vaccinate a fraction of the
population larger than the estimate given by a simple (homogeneous) assumption [270]. In this case, it can be proved that
optimal vaccination programs can eradicate the disease by vaccinating a smaller number of individuals. A straightforward
way to reintroduce an intrinsic vaccination threshold in heterogeneous networks consists in using different fractions of
vaccinated individuals according to their connectivity. Let us define x; as the fraction of immune individuals with a given
connectivity k and averaging x, over the various connectivity classes, we have the critical vaccination threshold as

1
=y <1 - m)P(k). (110)

k>p;!

Scale-free networks can be considered as a limiting case of heterogeneous systems and it is natural to look for specifically
devised vaccination strategies. This however, does not work on SF network. Because of the absence of any epidemic threshold
in SF networks, it becomes impossible to find any critical vaccination rate that ensures the eradication. In scale-free (SF)
networks, the previous equation takes the form

X 1 (k) (111)
B
This shows that only a complete vaccination (x. = 1) of the network works to eradicate the disease over scale free network
with (k?) — oo.

While uniform or proportional vaccination fails to protect contagion over scale-free networks due to its peculiar nature, it
has been seen that scale-free networks are strongly affected by selective damage. For example, if a few of the most connected
nodes are removed, the network suffers a dramatic reduction of its ability to carry information [224,225,268]. With this idea,
one can design a targeted vaccination scheme to progressively make immune the most highly connected nodes, i.e., the ones
more likely to spread the disease. In scale-free networks, it produces an significant increase of the network tolerance to
infections at the price of a tiny fraction of immune individuals [269,273,274].

Suppose, a fraction x of all nodes with connectivity k > k. are vaccinated in a network. Then x = Zbkc P(k). At the
same time, this also implies that all links emanating from vaccinated individuals can be considered as if they were removed.
So, if we assume that the fraction of links is effectively removed from the network, the new connectivity distribution after
the vaccination of a fraction x of the most connected node is

ke
Pl =Y P@ () 1= (112)
q>k
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This gives, calculating the first two moments, the critical fraction of vaccination needed to eradicate the infection given by
the relation:

(K*)x. _ (k)

= 1— =B, 113

K ") [1—p&)]+px) =B (113)

where (k) = Zifmn kP(k), (k*). = Z’,ﬁ;ﬂ_n k?P (k). An explicit calculation for Barabasi-Albert network model, the
approximate solution for the vaccination threshold is given by

Xc ~ exp(=2/kminB)- (114)

This clearly indicates that the targeted vaccination program is extremely convenient in scale-free networks where the critical
vaccination is exponentially small in a wide range of spreading rates f;. Also in this case, the present result can be generalized
for scale-free networks with arbitrary connectivity exponent ¢.

A comparative analysis of targeted vaccination over SW and BA models exhibit contrastive results [274]. In the case of
the SW networks, the behavior of the prevalence as a function of x is equivalent in the uniform and targeted vaccination
procedures. On the contrary, in the case of the BA networks, we observe a drastic variation in the prevalence behavior,
though it is sensitive to random choice of immune nodes. This however, confirms that targeted strategies do not have a
particular efficiency in systems with limited heterogeneity, but are highly sensitive to the network with higher degree of
heterogeneity such as scale-free networks. Targeted vaccination of a small fraction of the most connected nodes in scale-free
networks shows significant impact on spread process of infection.

Another target-based strategy is acquaintance vaccination that tries to target all of the most highly connected nodes for
vaccination [269,274-277], but this strategy requires no knowledge of the node degrees or any other global knowledge. In
this approach a random group of nodes are chosen and then a random set of their neighbors are selected for vaccination.
The most highly connected nodes are far more likely to be in this group of neighbors. So immunizing this group results
in targeting the most highly connected nodes, and it requires far less information about the network [277-279]. Another
variant of this strategy again calls for the random selection of nodes but instead asks for one of their neighbors with a higher
degree, or at least more than a given threshold degree and immunizes them [275]. These degree based strategies consistently
require fewer nodes to be vaccinated and as such improve a network’s chances against epidemic attacks [269,277].

This however, is just a brief summary about vaccination on networks. For more details about mathematical and physics
framework, please see next section.

5. Non-behavioral epidemiological vaccination on networks

Due to the potential threat posed by the spreading of infectious disease, ample research has been devoted to the
mitigation and prevention of epidemics. To date, one of the most popular and effective methods is network vaccination
[229,274,280-284], where certain nodes in network are effectively immunized by a perfect vaccine, and are thus no longer
able to transmit the disease to their neighbors [285]. More precisely, given a fixed effective spreading rate 8;/y (8, and y are
the infection rate and recovery rate respectively. Without loss of generality, y = 1 is fixed since it only affects the definition
of the time scale of epidemic spreading.), the relevant control parameter is the immunity rate x, which is simply defined as
the fraction of vaccinated nodes in a network. The challenge is how to arrive at a minimal value of x, which is the so-called
vaccination threshold x., to reduce the spreading rate of the disease §; under the critical threshold f;., such that the disease
dies out completely [286-288].

This section is devoted to the systematic review of such non-behavioral vaccination techniques, where networks are
effectively immunized by means of a targeted vaccination of certain nodes. We will review research done on single-layer
and multilayer networks, on static and adaptive networks, and theoretical as well as empirical results.

5.1. Uniform (or random) vaccination

The simplest vaccination strategy that one can conceive, the implementation of which requires no preparation or
information at all, is uniform or random vaccination [270,274]. Here a fraction x of nodes are randomly selected and then
vaccinated. Accordingly, only the remaining 1 — x fraction of nodes contributes to the spreading of the disease. The effective
number of neighbors that each susceptible node possesses thus decreases from its degree k to k(1 — x). If one considers the
standard SIS model as an example, then after vaccination the evolution equation of the probability ,o,’c(t) that a node with
degree k is infected at time ¢ is

d I
£ é}(t) = —p(t) + Bik(1 = 01— plO1 Y PK [k)ply (1), (115)

K

where the first term defines the rate at which infected nodes of degree k recover and become susceptible again, and in the
second term P (k’| k) refers to the conditional probability that an infected node with degree k' points to the node with degree k.
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It can be observed that in the mean-field model, where individuals interact randomly with one another, the uniform
vaccination is equivalent to the simple decrease of the spreading rate of the disease from S, to 5;(1 — x). Since eradicating
an epidemic by uniform vaccination requires f; to be below its critical epidemic threshold g;., we obtain

Bi(1 —xc) = By, (116)

where X, is the critical vaccination threshold, above which the density of infected individuals in the stationary state is zero.
However, in predominantly homogeneous networks, such as random or small-world networks, ;. = 1/((k) 4- 1) for the
SIS model and B;, = 1/(k) for the SIR model [144,280]. Based on Eq. (116), the vaccination threshold is

1 1

— 11— — 117
e B (k) +1 o
for the SIS model, and
11
Xx=1——— (118)
Br (k)

for the SIR model. Thus, if the uniform vaccination level is larger than x., homogeneous networks will be completely
protected and no large epidemic outbreaks will be possible.

Conversely, the situation is much different for strongly heterogeneous networks, such as scale-free networks, where
the epidemic threshold vanishes [225,289]. Here uniform vaccination will fail. In particular, the absence of an epidemic
threshold (B;, = 0) in the thermodynamic limit implies that no matter how one rescales 8; — B;(1 — x), the epidemic will
not be stopped unless x = 1.

Based on the fact that in heterogenous networks ;. = (k)/(k?) for the SIS model and B;. = (k)/({k?) — (k)) for the SIR
model [144,171,290], and by using Eq. (116), the threshold of uniform vaccination is given by

xo=1- LK (119)
Bk
for the SIS model and
1 (k)
B (k?) — (k)
for the SIR model.

In a scale-free network with degree exponent { < 3, we have (k*) — oo, which indicates x,. — 1 for both the SIS
and the SIR model [144,274]. In other words, a complete vaccination of the network is required to stop an epidemic. As
emphasized before, uniform vaccination is largely inefficient for disease eradication in heterogenous networks [224,225].
This theoretical prediction is also consistent with the finding that many infectious diseases require that 80%-100% of the
population be vaccinated to prevent an outbreak. For example, measles require 95% of the population be vaccinated [270],
while for digital viruses the strategies relying on uniform vaccination call for practically 100% of the computers to install the
appropriate antivirus software [144,225,291].

5.2. Targeted vaccination

5.2.1. Degree-based targeted vaccination: theoretical prediction of the vaccination threshold

The problems encountered with uniform vaccination are rooted in the vanishing epidemic threshold. Therefore, to suc-
cessfully eradicate a disease in a heterogenous network, we must increase the epidemic threshold. This requires us to modify
the underlying contact network to reduce the degree variance (k?). Evidently, large-degree nodes are known to be respon-
sible for the large variance of heterogenous networks. Thus, if we vaccinate only the nodes whose degree exceeds a pres-
elected threshold value k., it should be easy to decrease the variance and increase the epidemic threshold [274,281,292].
To this aim, Pastor-Satorras and Vespignani have proposed a degree-based targeted vaccination strategy in which the most
highly connected nodes are progressively immunized, given that these are the ones that are most likely to spread the disease
[274,275,277,283,292-299].

The vaccination of a fraction x of large-degree nodes can be regarded as the removal of nodes whose degree is larger than
a certain value k.. Accordingly, x thus can be implicitly defined as

o0

x= Y P(k. (121)

k=kc+1

Moreover, the average (k). and the second moment (k?). of the degree distribution with maximum degree k. of the network
are

ke
(ke =Y kP(k), (122)

k=Kmin
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and

ke

(@)=Y Pk, (123)

k=kmin

where ki, denotes the minimal degree of the node in a network.

However, the removal of large-degree nodes will modify the degree distribution of the remaining nodes, owing to the
deletion of the links between removed and remaining nodes. The probability that the link connected to the removed nodes
is also removed equals the probability that the link points to a node whose degree is larger than k.. We thus have

2, kP(k
f= 3y LW (124)
S W
and the degree distribution of the resulting network becomes [274,289]
- (k
Y — k=K 1 _ £\K
P'(K)y=Y" <k,>f (1= ¥P(k). (125)
k=K'
Finally, the average degree (k') and the second moment (k’z) of the resulting network are [274,289]
ke
Ky= D KP'(K)=(1~Fk)e, (126)
K =kinin
and
ke
K%)= 3 KPK) = (1= )X)e + 51— D, (127)
K =kmin
respectively.
For the SIS model, the epidemic threshold of the resulting network can be calculated as
K 1—-1)(k
pr=t (=Dl | (128)
(k=) (A=) + (1= f)ik)e
Assuming 2 < ¢ < 3 and combining Eqs. (122)-(124), we obtain [281]
3—C 49 3=C o A
ﬂl/c = |:é-_2k? {k;inZ - g.fzkf 2gkrzn;in‘l + k? ;ktEan] : (129)
A similar approach to the SIR model yields
3—C i rs 3—=C o oo . !
IB’/C = |:é-_2k3 Ckfninz - {ik? 2[kzmgz'n‘l + k? {kr(ninz - 1j| . (130)
In both the SIS and the SIR model, if k. > ki, we have [281]
=2 5 ¢
Bi. ~ ﬁkiﬁf"? 3 (131)

For here it follows that if more large-degree nodes are vaccinated, and thus k. becomes smaller, the epidemic threshold will
become larger. By vaccinating an appropriate fraction of large-degree nodes, we enable §;. to increase beyond the spreading
rate B; of the disease. Accordingly, the network is then protected completely.

In order to assess the efficiency of degree-based targeted vaccination, it is useful to derive the explicit expression for the
vaccination threshold in an uncorrelated network with a power-law degree distribution P(k) = ck™¢ andc ~ (¢ —1)/ k;an,
where ¢ = 3 [274]. In this case, we obtain x = k2. k-2, f = x"2, (k)c = 2Kmin, and (k). = 2k2,.In(x~"/?) based on
Eqgs. (121)-(124). The critical vaccination threshold x. needed to eradicate the disease is then

k)
(k)

By inserting above values into Eq. (132) and combining Eqs. (126)-(127), we obtain the approximate solution for the
vaccination threshold in the case of targeted vaccination [274]

Xc ~ exXp(—=2/kminB1)- (133)

= B (132)
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Fig.9. Reduced prevalence of disease py/po for the SIS model on a scale-free network, as obtained with random (circles) and targeted (squares) vaccination
at a fixed spreading rate 8; = 0.25, respectively. A linear extrapolation from the largest values of x yields an estimation of the threshold x, >~ 0.16 for
targeted vaccination.

Source: Adapted with permission from Ref. [274].
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This equation indicates that the degree-based targeted vaccination strategy can be very effective, giving a critical vaccination
threshold that is exponentially small for a wide range of spreading rates.

This theoretical prediction can be tested numerically with simulations of the SIS model on a scale-free network. Results
presented in Fig. 9 compare the efficiency of targeted vaccination and random vaccination, respectively. It can be observed
that for random vaccination the disease prevalence decays very slowly and vanishes only in the x — 1 limit. Conversely,
for targeted vaccination there is a very sharp drop toward the vaccination threshold (indicated by the arrow), above which
the system is infection-free. A linear regression from the largest value of x yields an approximate vaccination threshold
X. ~ 0.16 in this case, which proves that scale-free networks are very sensitive to degree-based targeted vaccination even
if a very small fraction of large-degree nodes is selected for vaccination.

5.2.2. Centrality-based targeted vaccination: definitions and simulation-based models

The procedure of degree-based targeted vaccination is equivalent to altering the structure of the network. Namely, by
vaccinating the large-degree nodes, we fragment the contact network, thus making it more difficult for the disease to
reach the nodes in the other components. Based on this principle, it is possible to devise alternative vaccination strategies
which take advantage of the heterogenous connectivity patterns in order to achieve a high level of tolerance toward
infections [274]. Accordingly, other centrality indexes, such as betweenness, closeness, eigenvalue, or PageRank, can be
used to design targeted vaccination strategies [288,293,294,296,297,297,300-310]. In what follows, we will briefly survey
these centrality indexes and their applications in targeted vaccination.

Betweenness centrality. Betweenness centrality is defined as the number of shortest paths between pairs of nodes that
pass through a given node [311-313]. More precisely, if 0, is the total number of shortest paths from node v to node w and
o, (i) is the number of those shortest paths that pass through the node i, the betweenness of i is given by b; = Z#w#i "(’;ﬁ” .

Since nodes with large betweenness centrality are often bridges between different communities in the network
[304,314], the vaccination of these nodes has a good potential to break up a large network into smaller parts. Hence, if
an epidemic starts in a particular component of the network, it cannot infect nodes in other components. Additionally,
betweenness centrality is an effective measure to identify high risk individuals, as it determines the volume of flow passing
through each node [294]. That is also one of the main reasons why largest betweenness-based vaccination is considered to
be the most effective targeted vaccination algorithm [315].

Random-walk centrality. Betweenness is, in some sense, a measure of the influence a node has over the spread of the
epidemic through the network. By counting shortest paths, betweenness-based vaccination simply assumes that epidemics
spread only along those shortest paths, which, however, is inconsistent with most empirical observations. To relax this
hypothesis, Newman proposed the random-walk centrality that involves the contributions from essentially all the paths
between nodes, though it still gives more weight to short paths [316]. The random-walk centrality of a node i is a measure
based on random walks, counting how often the node i is traversed by a random walk between any pair of nodes s and v

r=Y Iy, (134)

s<v

where I, (i) = % Zj AjlTis — Tiy — Tjs 4+ Ty | for i # s, v, and Tjs is the element in the voltage matrix. This measure is
particularly useful for finding high-centrality vertices that do not happen to lie on geodesic paths or on the paths formed
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by maximum-flow cut-sets, which are still important for the epidemic spreading [316]. Salathé and Jones have proven that
vaccination strategies based on random-walk centrality can result in the lowest number of infected cases if the vaccination
coverage is low [304].

Closeness centrality. Closeness centrality is based on the assumption that nodes with a short distance to other nodes can

spread the disease very effectively across the network [294,311]. It is defined as
1

2l

J#
where [j; is the distance between nodes i and j. This measure gives a large centrality to nodes which have small shortest path
distance to the other nodes. Therefore, immunizing largest-closeness nodes not only vaccinates high risk individuals, but
also postpones epidemic spreading through the network [311,312].

Eigenvector centrality. Degree centrality awards one “centrality point” for every network neighbor a node has. In
reality, however, all the neighbors are not equivalent. Under many circumstances, a node’s importance in one network
increases via building connections to other nodes that are themselves important, which is the concept behind eigenvector
centrality [296,315,317,318]. Instead of awarding just one point for each neighbor, eigenvector centrality gives each node a
score proportional to the sum of the score of its neighbors. That is, the eigenvector centrality e; of a node i is proportional to
the sum of the eigenvector centrality of the nodes it is connected to. It is defined as

e = A_l Zaijej, (136)
J

¢ (135)

where a; denotes the adjacency matrix of the network, A is the largest eigenvalue and e; is the ith component of the
eigenvector associated with A of the network.

The impact of eigenvector centrality on epidemic control has been evaluated by [317,319]. Tomovski and Kocarev used
nonlinear system stability analysis of the SIS model and proved that the epidemic threshold equals to the reciprocal value
of the largest eigenvalue of the network adjacency matrix [319], that is

1

Brc = 1 (137)

Therefore, the risk of infection through networks can be reduced by decreasing A. Along the same lines, Masuda defined I;
as the decrement of A owing to the removal of node i [320]
p=_ 24 & (138)
l’ = =~ 2 .
A ; €

From here it is clear that the vaccination of a node with a large e; (I;) will significantly increase the epidemic threshold, and
thus the epidemic will be effectively suppressed.
PageRank centrality. The PageRank centrality [307], introduced by Google for webpage ranking, is given by

pi=62%+(l—c)1/N, (139)
J€EB; J

where i is a web page, B; represents the set of pages that point to i, and N; denotes the number of pages that j points to.
Moreover, ¢ is arandom jumping factor which is introduced by assuming that the web surfer will browse the web pages along
the links with probability c, and leave the current page and open a random page with probability 1—c. Similar to eigenvector
centrality, PageRank supposes that the importance of a node is determined by both the quantity and the quality of the nodes
that point to it. In terms of epidemic spreading, nodes with large PageRank centrality are more likely to be infected or infect
others [296]. Their vaccination can thus eliminate a large number of potentially very effective disease transmission routes.
Since nodes with large PageRank centrality have many low-degree neighbors, largest PageRank vaccination will immunize
influential nodes whose vaccination choice can strongly protect their neighbors [296].

To obtain a better understanding of all these proposed vaccination schemes, Shams et al. compared the efficiency of
different centrality indexes in terms of the vaccination threshold x., and plotted it as a function of the average degree (k) for
different network models [315]. As shown in Fig. 10, it can be observed that HP (for the meaning of the abbreviation please
refer to the caption of Fig. 10) delivers the best performance on all the networks, HB is second-best, while HE and HC deliver
the worst performance. Despite of the weak performance of HD in small-world networks, the approach performs well on
scale-free and ER random networks.

Moreover, we point out that targeted vaccination techniques can be improved by adaptive strategies, in which the
centrality is recalculated for the network of unvaccinated nodes at each step of the vaccination process [313]. For example,
degree-based vaccination with dynamic re-ranking entails an immediate update of node degrees, and then the nodes
with the largest number of unvaccinated neighbors are vaccinated at each time step [296]. When a node has been
vaccinated, the adaptive betweenness centrality is recalculated for the remaining network composed of unvaccinated nodes
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Fig. 10. The critical threshold of vaccination x., as a function of the average degree (k) on different networks. The legend refers to the following vaccination
strategies: targeted vaccination based on degree (HD), betweenness (HB), closeness (HC), eigenvalue (HE), and PageRank (HP).
Source: Reprinted figure from Ref. [315].

[296,297,305,313]. Although such adaptive approaches are more efficient from the theoretical viewpoint, they usually
require more information, and the complexity of the procedure might make a practical implementation difficult for all but
very small populations [305].

5.3. Vaccination without global knowledge

Although targeted strategies are in principle very effective, an important drawback in terms of practical applications
in the real world is that they require complete knowledge of the network structure. Only so it is possible to identify and
then vaccinate the most influential nodes as determined by the employed metric. However, the complete structure of the
network is seldom, if ever, known, and often it is also not well-defined. In social networks, for example, the number of links
an individual has depends strongly on the criteria based on which the network is constructed. To overcome the lack of global
knowledge of the network structure, several different strategies have been proposed that require information only about
the local structure of the network. The efficiency of these vaccination strategies can nevertheless be very similar to that of
targeted vaccination, as reviewed in what follows.

5.3.1. Acquaintance vaccination: theoretical prediction of the vaccination threshold

The so-called acquaintance vaccination was first proposed by Cohen et al. [269,277], in which a fraction p of nodes is
selected at random, with the constraint that each node is required to have at least one connection to another individual in
the network. Subsequently, this neighbor, rather than the originally selected node, is vaccinated. The strategy thus requires
no knowledge of the degree of nodes or other global knowledge about the network.

More precisely, the probability that a node with degree k is selected for vaccination is kP (k) /(N (k)). This quantifies the
known fact that randomly selected acquaintances have, on average, a higher degree than randomly selected nodes [176,321].
Based on percolation theory, Cohen et al. developed a theoretical framework to determine the critical fraction p. and
vaccination threshold x.. They followed a possible branch in the course of the epidemic, starting from a random link of the
spanning cluster. That is, they studied the possible spreading of the epidemic by considering nodes that are not vaccinated,
and are therefore susceptible to the epidemic and may become infected [277]. If n;(k) denotes the number of nodes with
degree k in some layer | (hop-distance from the starting point), the number n;, (k') of nodes with degree k' that are
susceptible in layer [ 4 1 is given by

g (K) = Y m(k)(k — Dp(K |k, s)plsi |k, k, 5, (140)
k

where k — 1 means that the node with degree k in layer [ has k — 1 new neighbors in layer [ + 1 (excluding the one through
which we arrived). Moreover, p(k'|k, s¢) is the probability of reaching a node with degree k' by following a link from a
susceptible node of degree k, while sy is the probability that a node with degree k is susceptible. Lastly, p(sy |K', k, si) is the
probability that the reached node is also susceptible.

Based on Bayes’ rule, it holds that

p(silk, kK)p(k'|k)

p(K'|k, s ) = —————— =, (141)
‘ p(selk)
Furthermore, assuming that the network is uncorrelated, we have
¢y = p(K'[k) = K'P(K')/(k), (142)

which is independent of k. The probability that the acquaintance is not selected in one particular vaccination attempt by a
random node of degree k, is 1 — 1/(Nk), and in all Np attempts, it reads

1\
vy (k) = (1 - Nk) ~ e P/k, (143)
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Fig. 11. The critical vaccination threshold x, as a function of the degree exponent ¢ of the contact network on which the disease spreads via the SIS model.
The curves correspond to two distinct vaccination strategies: uniform vaccination (top curve) and acquaintance vaccination (lower curve). The continuous
lines represent the analytical results while the symbols represent simulation data for N = 10° and ki, = 1.

Source: Adapted with permission from Ref. [277].
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However, if the neighbor’s degree is not known, the average probability becomes v, = (v,(k)). Then the probability that a
node with degree k' is susceptible (not vaccinated) is

pslK) = (vp(k))*, (144)
if no other information on its neighbors exists. But when the degree of one neighbor is known to be k', we have

p(selk, K) = e P/¥ x (e P/kyk=1, (145)

Since the fact that a neighbor with known degree is vaccinated does not provide any further information about a node’s
probability of vaccination, it follows p(si|k, k') = p(sk|k, k', s').
Substituting above results in Eq. (140), we obtain

mia () = m(K) Y pk(k — Doy ~2e /K, (146)
k

If the sum in the above equation is larger than 1, the branching process will continue forever, which is referred to as the
percolating phase. On the contrary, if it is smaller than 1, the vaccination is subcritical and the epidemic will be contained.
Thus, we obtain a relation for p., which is

SOPOKE=D o (147)
R

and the vaccination threshold is easily obtained from the fraction of nodes which are not susceptible, namely
X =1=Y Plp(silk) =1-Y Pk . (148)
k k

Results presented in Fig. 11 show the critical threshold that is required to eradicate a disease in a scale-free network. It
can be observed that acquaintance vaccination is more efficient than random vaccination for both high and low ¢ values,
corresponding to homogeneous and heterogenous networks, respectively.

5.3.2. Other strategies: definitions and simulation-based models

In addition to acquaintance vaccination reviewed above, similarly efficient strategies can be devised based on local
information about the structure of the network. An example is the so-called random walk vaccination strategy [322], in
which a random walker diffuses through the network, and every node that it visits is vaccinated until a given fraction of the
population is immune [323]. Given that a random walker visits a node with degree k; with the probability proportional to
k;, this strategy could lead to the same effectiveness as achieved by acquaintance vaccination [229]. Another alternative to
acquaintance vaccination is common acquaintance vaccination, where only the common neighbors of the randomly chosen
nodes are selected for vaccination [276]. This may alleviate inefficiencies related to the fact that, of course, only very few of
the randomly selected nodes and their neighbors will be the hubs of the network. Indeed, common acquaintance vaccination
proves to be somewhat more effective than the simpler acquaintance vaccination.

The acquaintance vaccination strategy can also be improved by taking into account additional information about the
local structure of the network. For example, if each node has the local knowledge about the degree of its nearest neighbors,
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Fig. 12. Comparison of different vaccination strategies for the Internet router map. R/Rg represents the ratio between the epidemic incidence (R) of
the four proposed vaccination strategies and the epidemic incidence (Rgg) without vaccination. The legend refers to the following vaccination strategies:
D-steps vaccination (Local), targeted vaccination (K4 ), random vaccination (Random) and single acquaintance vaccination (SAI). In each case, 1% of the
non-vaccinated nodes were initially infected at random. The distance considered in the local algorithmis: (a) D = 1; (b) D = 2;(c)D = 3;(d)D = 5.
Source: Adapted with permission from Ref. [326]. With permission of Springer.

and selects the neighbor with the degree to be vaccinated, then the efficiency in comparison to acquaintance vaccination is
significantly improved [324]. Similarly, the random walk vaccination strategy can also be improved via a bias favoring the
exploration of large-degree nodes during the random walk process [323,325].

Along the same line, if even more local information is available, for example if nodes have the knowledge about the degree
of their neighbors within short paths of length D, then the so-called D-steps vaccination strategy can be employed [326,327].
In particular, for every node i, simply look for the largest-degree node within the distance D and vaccinate it. In case several
nodes within the distance have the same largest degree, then choose one of them uniformly at random.

Based on these considerations, in [326] detailed numerical simulations of four different vaccination schemes, including
D-steps vaccination, degree-based targeted vaccination, random vaccination, and acquaintance vaccination, were performed
and tested in terms of their efficiency. As shown in Fig. 12, targeted vaccination expectedly produces the best results, and
this irrespective of the interaction topology. Also understandably, the performance of random vaccination is not affected
by the structure of the network. Turning to local algorithms, it is found that the vaccination scheme based on the covering
algorithm performs better than acquaintance vaccination, even for small values of D. In fact, the D-steps vaccination is only
outperformed by the targeted procedure and lies between the most efficient and the acquaintance vaccination scheme for
all the values of D and f;. Moreover, from a practical point of view, the covering strategy could be a good policy since it
balances the degree of local knowledge and the efficiency of the vaccination. As most empirical network topologies are
neither completely known nor completely unknown, this method thus allows us to fine-tune the value of D on a case-by-
case basis, i.e., according to the degree of local knowledge of the network.

In addition, Gao et al. evaluated the relationship between the threshold x, of the aforementioned vaccination strategies
and the power-law exponent of the degree distribution of the network, which is shown in Fig. 13 [283]. A low level of x.
with a small variation indicates that the immunization strategy is robust. Results presented in Fig. 13 also show that the
robustness of the D-steps vaccination strategy is close to that of targeted vaccination.

Vaccination plays an obviously important role in the study of epidemic transmission and prevention. Based on the above-
reviewed research, we can conclude that the efficiency of vaccination depends significantly on the amount of information
we have about the structure of the network, and whether this information concerns the global or the local structure. In the
rare case information about the global structure is available, targeted vaccination works best. If only information about the
local structure is available, then the D-steps vaccination seems to provide the optimal compromise between efficiency and
flexibility. Table 3 gives a systematic summary of the reviewed vaccination strategies, for a quick overview.

5.4. Vaccination on other types of networks

Up to now, we have focused mainly on research concerning vaccination on traditional network models. This research
provides vital insight in terms of the efficiency of vaccination under different circumstances, yet empirical networks
usually have particular topology properties that require special care. This includes taking into account community structure
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Table 3
Summary of non-behavioral epidemiological vaccination strategies, with details concerning vaccinated nodes, network models, and the
required knowledge about the structure of the network.

Vaccination strategy Vaccinated nodes Applied network models Required knowledge of
topology

Uniform (or random) Random chosen nodes Homogeneous networks less No any need of network

vaccination heterogeneous networks information

Targeted vaccination Nodes with high centrality® Heterogeneous networks Global knowledge of network
networks with special centrality topology

Acquaintance Random neighbor of random Homogeneous networks Local knowledge of network

vaccination” chosen node® heterogeneous networks topology

¢ Centrality includes degree centrality, betweenness centrality, random-walk centrality, closeness centrality, eigenvector centrality
and PageRank centrality.

b Except for simple acquaintance vaccination, it also includes common acquaintance vaccination, random walk vaccination, D-steps
vaccination strategy.

¢ Correspondingly, it also involves common neighbor of random chosen nodes, nodes visited by random walker, largest-degree node
within the distance D of random chosen node.

[169,187,328-331], changes in the network structure over time [52,217,332-336], as well as multilayer properties that are
typical for a large plethora of real-world networks [202,230,239,240,337-346]. In what follows, we will review vaccination
programs that take into account the particular aspects of these properties on various types of networks.

5.4.1. Vaccination on community networks

Community structure is ubiquitous in a variety of real complex systems, such as human contact networks and social
networks. The hallmark of this fact is that the connections among members of the same community are much more common
than connections among members of different communities [169,187,328-331]. For networks with community structure,
the weak ties that connect a pair of nodes belonging to different communities, usually named the bridge nodes, therefore
typically provide pathways for information and disease to propagate from one community to the other. These nodes thus
play a more important role in the spreading of disease than the nodes with no or fewer inter-community links [347,348].
However, their importance is not necessarily reflected by their degree centrality. In this regard, identifying the bridge
nodes in community networks is crucial in preventing epidemic outbreaks [320,349]. Identification of community bridges
can be partially achieved by betweenness centrality or random-walk centrality, since both locate nodes on the basis of
important paths of epidemic spreading. On a similar note, Chen et al. proposed a vaccination strategy based on an equal
graph partitioning algorithm to identify the minimum group that separates a network into several clusters of approximately
equal size [293]. The role of the minimum separator group is actually similar to that of the bridge nodes connecting different
communities.

Salathé et al. [304] subsequently proposed a dedicated community bridge finder (CBF) algorithm that searches for the
bridge nodes, thereby requiring only local structural information about the structure of the network. Their research showed
that such a method is more efficient than vaccination strategies targeting different kinds of hubs. The algorithm is based on
the self-avoiding walk, which starts from a randomly chosen node vy, and then follows the procedure outlined in Fig. 14.
After t steps (t > 2), the set of all the visited nodes is denoted by {vy} fort" = 0, 1, ..., t. Thus, v, is the node where the
walker is located after t steps, and v;_ is the node visited at step t — 1. The first process is to examine whether the node v;
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Fig. 14. A schematic presentation of the community bridge finder (CBF) algorithm. (a) A random walker follows the path starting from vy to vy and v, at
which point it starts checking the connections from v, to vy and v;. (b) Since there is more than one connection (v, — v; and v, — vg), the walker turns to
v3. () Except for the obvious v3 — vy, there are no connections from v; to any of the previously visited nodes, so v, is a potential target. (d) The algorithm
then picks two random neighbors of v3 to check connections with previously visited nodes and finds one (to vy). (e) Hence, v, is dismissed as a potential
target, and the random walker comes to v4. Again, v4 does not connect to any previously visited node (except to v3), and thus vs is identified as a potential
target. (f) Again, two random neighboring nodes are picked to check connections with previously visited nodes. Since no back connections can be found,
vs is identified as a target and vaccinated.

Source: Reprinted figure from Ref. [304].

has a link or several links to the nodes in the set {v/}, other than the link between v, and v;_1. If yes, the self-avoiding walk
proceeds toward step t 4 1; otherwise v;_; will be considered as a possible target of the bridge node. To determine whether
the node v;_; is one bridge node, two nodes are randomly chosen among all the possible nodes that the walker could visit in
step t+ 1, i.e. two neighbors of the node v; are randomly chosen (except for the node v;_; due to the self-avoiding restriction
of the walk). If there exists a path from any of the two chosen nodes back to any node in the set {vy}, then the node v;_4
will not be a bridge node and the walker moves to node v, 1. If there exists no path back to the set {v,/} from both chosen
nodes, v;_1 is regarded as a bridge node that connects two communities and is vaccinated. Then a new self-avoiding walk
starts and the above procedure is repeated until the desired vaccination ratio is attained. An important idea behind the CBF
algorithm is actually that a community is formed by a circle of close friends. Thus, when two randomly chosen neighbors
of vy cannot trace back to the community that v,_; belongs to, the link between v;_; and v, is likely to be a bridge between
two communities, and the node v;_; is hence a bridge node.

It has been found that community networks typically exhibit a heterogeneous distribution in the number of weak ties
originating from the bridge nodes [184,350]. Inspired by this finding, Gong et al. turned their attention to a particular kind
of bridge nodes, named bridge hubs, which connect a community to many other communities, i.e., bridge hubs have a large
number of weak ties [349]. They proposed a vaccination strategy named bridge-hub detector (BHD) to identify the bridge
hubs. This algorithm extends the self-avoiding searching scheme to examining the overlap and the existence of links from
all the neighbors of the last node back to the union of the friendship circles of all the nodes in the trail of the walk. A pair
of nodes, a bridge node and a bridge hub, are searched for vaccination via a self-avoiding walk. Compared with other local
vaccination strategies such as acquaintance vaccination and CBF, this strategy is proven to be more effective in preventing
the epidemic [349].

Also of note, Masuda recently proposed a vaccination strategy based on the eigenvector centrality for community-
structured networks [320]. In his work, a module based strategy technique is employed for measuring the contribution
of each node to the weighted community network in order to preferentially vaccinate nodes that bridge important commu-
nities. The number of links that these nodes share gives the weight of a link between any two communities. The influence
of a node is thus related to the importance of the community together with its connectivity to other communities.

5.4.2. Vaccination on adaptive networks

From the epidemiological viewpoint, when an infectious disease occurs in a population, individuals are likely to adopt
some self-protection measures to protect themselves from the disease. For example, susceptible people may break their
contacts with infected partners, which can significantly alter the structure of the contact network, thus influencing the
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Fig. 15. The effect of IMR strategy and IMSI strategy versus the starting time T of quarantine for (a) Aig(To), (b) io, imax, (¢) At(Tp) and (d) r(Tp).
Source: Reprinted figure from Ref. [351].

pathway of the epidemic spreading [52,333-335,351-354]. Both SIS and SIR models have been studied on adaptive networks
in which susceptible nodes rewire their links adaptively from infected neighbors toward other non-infected nodes [52,333].
Such adaptation typically increases the epidemic threshold and reduces the number of infectious cases, thus contributing
favorably to the containment of epidemic spreading.

Moreover on the subject, Shaw et al. have studied vaccine control of disease spreading on an adaptive network to model
the specifics of disease avoidance behavior [335]. Control was implemented by adding a Poisson-distributed vaccination to
the susceptible individuals. Their research showed that vaccine control is much more effective in adaptive networks than
static networks due to the feedback loop between the adaptive rewiring and the administration of the vaccine. On the other
hand, Yang et al. have focused on the transient process rather than the steady state, and found that strong community
structure (S nodes community and I nodes community, connected by SI links) is induced by the rewiring mechanism in
the early stages of the epidemic spreading [351]. Subsequently, they proposed and examined various vaccination strategies
that build on this fact, targeting in particular such SI links. In particular, the vaccination of randomly selected S bridge
nodes from SI links (IMSI) and the vaccination of randomly selected I bridge nodes from SI links (ISSI) were considered. To
evaluate the efficiency of IMSI and ISSI strategies, the vaccination of randomly selected S nodes from the network (IMR) and
the vaccination of randomly selected I nodes from the network (ISR) were also employed.

In terms of their results, in Figs. 15 and 16, Ty denotes the starting time of vaccination, Aig(Ty) is the difference between
the maximal density of infected individuals i, (Tp) that can be reached after vaccination and the density of infected
individuals ig(Ty) at time Ty, i.e. Aig(Ty) = imax(To) — io(Ty). At(Ty) represents the time interval of this process, and r(Tp)
denotes the total percentage of vaccinated nodes in At(Tp). In Fig. 15, the impact of the IMR strategy is almost equal to
that of the IMSI strategy. Because most S nodes are located on SI links when an epidemic prevails in an adaptive network,
randomly vaccinating S nodes can give rise to similar effects as vaccinating S nodes on SI links. Nevertheless, for ISR and ISSI,
quarantining I nodes on SI links is significantly more effective than quarantining I nodes randomly, since the former can
efficiently cut the pathways along which the disease could be invading the S cluster (Fig. 16). Because of this fact, the ISSI
strategy is more efficient in controlling the epidemic and has a larger optimal region. More importantly, the consideration
of these different vaccination strategies reveals a counterintuitive conclusion: “the earlier the better” does not necessarily
hold for the implementation of vaccination measures. Optimal results can be expected more realistically if smart vaccination
strategies are implemented when the community structure emerges after the initial rewiring of links that sets in due to an
epidemic.

5.4.3. Vaccination on multiplex networks

Multiplex networks, as a typical kind of multilayer network structure, can be regarded as the combination of several
network layers, which contain the same nodes (or share at least some fraction of nodes) yet different intra-layer
connections [202,230,239,240,337-343,355-357]. For each node, we term its counterpart in every layer as a ‘replica’.
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Fig. 16. The effect of ISR strategy and ISSI strategy versus the starting time Ty of quarantine for (a) Aig(Tp), (b) io, imax, (¢) At(Tp) and (d) r(Tp).
Source: Reprinted figure from Ref. [351].

Along the above definition, may real-world social and engineering systems, such as online social networks [231,358-364],
airport traffic networks [357,365,366], biological metabolic networks [367,368], and scientific collaboration and citation
networks [369], can be put into the framework of multiplex networks. Multiplex networks naturally shed new light into the
research of epidemiology (see Refs. [202,230] for a comprehensive understanding). For example, the well known acquired
immune deficiency syndrome (AIDS) usually propagates via three types of ways, namely sexual activity, blood, and breast
milk. Different transmission routes could be mapped into different network layers which contain the same individuals yet
different network topologies and dynamic properties [239]. Moreover, coupling methods from different layers will greatly
affect the onset of disease and its outbreak threshold [239]. In what follows, we will focus on recent research concerning
vaccination in multiplex networks.

To distinguish the node of a multiplex network and its replica in each network layer, Zhao et al. proposed the terminology
of the multiplex node and the layer node [343]. The former refers to the node which has neighbors in each layer via different
intra-layer connections, like node 3 of Fig. 17(a), whose neighbors are nodes 1, 5 and 4 via blue and black links. While the
latter is the partial case of a multiplex node and just involves the local connections of a node in one given layer. For example, if
we only consider blue (black)links in Fig. 17(b), node 3 is the layer node of Layer-1 (Layer-2). Correspondingly, vaccination on
multiplex networks could be classified into multiplex node-based vaccination and layer node-based vaccination. Multiplex
node-based vaccination means that all the replicas of one node simultaneously possess immunity in all the layers, while
layer node-based vaccination provides protection solely to nodes in a given network layer.

Similar to the vaccination strategies on single-layer networks, Refs. [343,370-372] proposed the corresponding
vaccination strategies (including random vaccination, targeted vaccination, and acquaintance vaccination) on multiplex
networks. Here, however, the aim of vaccination is specified to layer nodes and multiplex nodes. These vaccination strategies
are determined by the vaccinated probability of layer nodes and multiplex nodes, which are summarized in Table 4.

%
Multiplex node-based vaccination refers to the case where a fraction of multiplex nodes is vaccinated. If x( k; ) is defined
as the vaccinated probability of multiplex node j, the generating function of the joint degree distribution under multiplex
node-based vaccination is given by

Go() =Y Pk —x(k » [ Tuf". (149)
E? i=1

The generating function of the remaining joint degree distribution by following a randomly chosen link of layer i is defined
as

; 19
GV (W) = = —Go(T). (150)
Z; 0U;

1
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Table 4
Vaccinated probability of layer nodes and multiplex nodes for different vaccination strategies.
Vaccination type & probability =~ Layer node-based vaccination Multiplex node-based vaccination
Random vaccination x(kj;,) = x;, for Vj x(l_g)) = x, for Vj
1, lfkjx > kg‘ N 1, lfK] > KC
Targeted vaccination x(ki) = {fi, ifk; = kq x(kj) = 1f, ifK =K
0, ifkji < km' 0, 1fK] < K.
) where K = T, i, B}
Acquaint inati ki) =1-(1—q Y~ kJ’*"(k’{)i)"h )=1-TI (CE-D P Mi)"‘i
cquaintance vaccination x(k;,) = i AT x(kj) = i=1.m mey T E o w
l_<; = (kj;. ki, ..., k;,,): the degree expression of multiplex node j; k;; refers to its degree in layer i.

x(k;;): the vaccinated probability of layer node j in layer i with degree k;,.

X(E'))Z the vaccinated probability of multiplex node j.

Bi;: the infectious rate of the disease in layer i.

kei: the cutoff degree for vaccination of layer node in layer i.

K;: the spreading degree of multiplex node j.

K.: the cutoff spreading degree for vaccination of multiplex node.
z;: the average degree of layer i.

a multiplex node

layer node

layer node

Layer-2

Fig. 17. Schematic illustration of a multiplex configuration. (a) In a multiplex network, six nodes are connected through two different types of links,
i.e., blue and black links. In this configuration, each node simultaneously belongs to two layers, and it is thus termed as a multiplex node. (b) Multiplex
networks are composed of several, for example, two layers, each of which is composed by the same type of links. The term layer node indicates that the
node is connected only through the one type of link in the corresponding layer. See main text for details with regards to the importance of this classification
for vaccination strategies.

Source: Reprinted figure from Ref. [355].

Then, the probability v; that a multiplex node connects to the infected cluster by following a random link of layer i is given
by the coupled self-consistency equation

v =G"(T) = ¢ (1= B, (151)

—_—

where 1 — Biv = (1 — Byv1, ..., 1 — BipUm). It is worth mentioning that the cluster of multiplex networks is defined as
a set of connected multiplex nodes. A pair of multiplex nodes is regarded as having a connection if there exists at least one
type of link between them.



Z. Wang et al. / Physics Reports 664 (2016) 1-113 45

Thus, the existence of an epidemic regime under multiplex node-based vaccination just requires the largest eigenvalue
A of the Jacobian matrix of Eq. (151) at (0, 0, ..., 0) to be larger than unity [373]. Consequently, the critical vaccination
—
threshold xCM will be the value of immunity x¥ = 3" p( ki )x(k; ) satisfying A = 1inEq. (151).
Layer node-based vaccination, in contrast, aims to vaccinate layer nodes. To calculate the critical vaccination threshold,
we just need to replace Gy (_u>) by

m
— .
Go() =3 p(k) [ Jeuths) + (1 = xillg)yu, (152)
¥ i=1
in Eq. (150), where x(k;,) is the vaccinated probability of layer node j in layer i with degree k;,. Since the vaccination of layer
nodes is performed independently in each layer, the critical vaccination threshold becomes a vector (xﬁ, ..., xt). which can
be obtained when the immunity xf = iji pi(k;)xi(k;;) is satisfying A = 11in Eq. (151).

According to the above theoretical analysis, computer simulations have revealed that both multiplex node-based random
vaccination and layer node-based random vaccination strategies are more effective in controlling disease spreading on
multiplex ER networks [343]. On the contrary, multiplex node-based targeted vaccination and layer node-based targeted
vaccination strategies provide better protection on multiplex SF networks. As on single-layer networks, random vaccination
strategies work well only in largely homogeneous networks, while targeted vaccination strategies are required for useful
results on heterogeneous networks.

With regards to the efficiency of acquaintance vaccination in multiplex networks, we note that it is closely related
to the correlation between network layers [370]. Interestingly, as the correlation coefficient increases, the vaccination
threshold decreases for multiplex node-based acquaintance vaccination, but slowly increases under the layer node-based
framework. Moreover, Buono et al. considered vaccination of only one layer and studied its effect on all the other layers
while disregarding degree-degree correlations among them [371]. Though, relative to the case of no vaccination, the size of
the epidemic is drastically reduced in the layer where the vaccination strategy is applied, the targeted strategy is still not
as efficient as in single-layer networks. Thus, the selection of the vaccination strategy has a major effect on the layer where
it is employed, but does not efficiently protect the individuals on other layers. Similar conclusions have also been reported
in Refs. [372,374], thus corroborating the need to reconsider single-layer vaccination strategies when applied to multilayer
networks.

6. Rationale for studying behavior-disease dynamics

As demonstrated by the foregoing sections of this review, epidemiological models that do not capture behavioral
dynamics have been very successful over the past century, in terms of yielding rich theoretical opportunities for research
as well as in terms of providing insights into epidemiological mechanisms and how to improve infection control. However,
the impact of human behavior on disease dynamics is ubiquitous, and vaccinating behavior is no exception.

This section is concerned with explaining the rationale for studying and modeling coupled behavior-disease dynamics
for vaccines, especially on networks. We start with a brief summary of vaccine use in public health, discuss why vaccinating
behavior may become an increasingly important part of disease control in coming decades, and then discuss how models
can help us to better understand and predict behavior-disease dynamics.

The twentieth century saw enormous progress in public health, and especially in terms of preventing and treating
infectious diseases. For instance, medical use of antibiotics began during World War II, and antibiotics have since changed
how bacterial infections are treated and saved many lives. Improvements in sanitation and hygiene are likewise credited
with preventing many cases of cholera, typhoid fever, yellow fever, dysentery, tuberculosis, and malaria by providing cleaner
drinking water and living conditions and improved hygienic practice [375]. The use of vaccines, although already available
for smallpox since the eighteenth century, expanded considerably in the twentieth century as vaccines were invented for
more infectious diseases, and were distributed to more people. Safe and effective vaccines now exist for many of the most
common infectious diseases that impose significant morbidity and mortality upon populations, such as smallpox, measles,
pertussis, influenza, hepatitis A and B, chickenpox, diphtheria, and others [3]. Global smallpox eradication was achieved in
large part due to the success of ring vaccination [376].

The use of vaccines has been estimated to save millions of children’s lives per year in the 1990s alone [3]. In the 2000s,
special immunization activities (SIAs) - ambitious large-scale immunization campaigns in the world’s poorest regions and
especially in sub-Saharan Africa - reduced the number of deaths due to measles from an estimated 766,000 per year in 2000
to an estimated 164,000 per year in 2008 [377]. Global eradication of measles in the coming decades is becoming seen as a
real possibility for the first time in history [378]. Thus, although challenges still remain, it is becoming significantly easier
to get vaccines administered to the people who need them. There are, however, important exceptions. For instance, the
challenges of administering vaccines in war zones have contributed to a large outbreak of polio in Syria as recently as 2015
[379]. At the same time in Pakistan, violence against WHO vaccinators has stymied efforts to combat polio [380]. Despite
this, global polio eradication is coming closer [381].

While some countries with resource limitations struggle to contain vaccine-preventable infectious diseases, other
comparatively wealthy countries are also struggling with infectious disease control, albeit for different reasons. In countries
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Fig. 18. Satirical cartoon by James Gillray capturing public fears of the smallpox vaccine in the 18th century, the first “vaccine scare”. Edward Jenner stands
in the middle, administering the smallpox vaccine. Vaccinated persons grow cow parts out of various parts of their bodies (the smallpox vaccine of the
time was based on the virus that causes cowpox, hence the fear among some that the vaccine would turn humans into cow-like hybrids). A painting of the

Worshippers of the Golden Calf hangs in the background.
Source: Wikimedia Commons.

such as the United Kingdom, Switzerland, and Germany, measles circulation in the 2000s and 2010s has been relatively
widespread compared to previous decades, and has often re-established endemicity in some populations due to parental
vaccine refusal or vaccine hesitancy on account of unfounded concerns about the link between the measles—-mumps-rubella
(MMR) vaccine and autism [382-384]. Similarly, polio was on the cusp of global eradication and had been limited to northern
Nigeria when an oral polio vaccine scare in 2003 caused resurgence of the disease and spread of polio to countries like Syria
and Pakistan that had previously eliminated the infection [385]. These are only two examples where population resistance
to vaccines due to unfounded concerns has led to reduced vaccine coverage and resurgent infections, even in resource-rich
countries where it is easy for children to get vaccinated, if their parents want it.

Logistic, financial, technological, and administrative barriers to vaccination are likely to continue receding in the coming
decades, enabling it to become easier to improve vaccine coverage everywhere in the world. As this happens, we speculate
that vaccine refusal and vaccine hesitancy such as recently observed in the case of MMR vaccine will become an important
barrier - and perhaps even the most important barrier - to global eradication of vaccine-preventable infections. Many factors
contribute to the decision to become vaccinated [6,383,386]. Also, vaccine refusal is not a new phenomenon, and even the
first vaccine to be invented - the smallpox vaccine — was subject to considerable resistance (see Fig. 18). However, growing
herd immunity generated by vaccine programs themselves can bring about the preconditions for vaccine refusal.

Vaccine refusal is often construed in the context of “free-riding”: individuals who do not vaccinate are consciously free-
riding on the herd immunity provided by those who do vaccinate. Debate on the usefulness of coupled behavior-disease
models often centers on whether individuals consciously free-ride when they make vaccinating decisions or not. However,
itis not necessary for individuals to consciously free-ride in order for vaccine refusal to be linked to growing herd immunity,
or for behavior-disease models to be useful (although it is certainly possible that some individuals will consciously free-ride
when making vaccinating decisions [387]). It is well-known that perceived infection risk and past exposure to infections are
determinants of whether or not individuals will choose to be vaccinated [386]. In particular, a high perceived infection risk
and/or a past history of infection are positively associated with decisions to accept vaccination. Therefore, lack of recent
infection, such as caused by vaccine-generated herd immunity, can decrease the motivation to become vaccinated. Parents
who have never seen a case of measles infection leading to hospitalization will tend to under-estimate the risk and/or
probability of measles infection. Similarly, lack of a recent outbreak can cause carelessness or de-prioritization on the part of
physicians, and therefore lower vaccine uptake [388]. Whether or not non-vaccinators consciously free-ride is secondary in
some respects. What matters is that vaccine-generated herd immunity brings about lack of recent infections in a population,
which can in turn cause vaccinating to become less of a priority, as well as creating fertile conditions for false rumors about
vaccine risk to spread. Vaccine programs are victims of their own success.

This is also echoed in observed behavior for pertussis and MMR vaccines. When declining vaccine coverage caused in
partly by vaccine refusal leads to an outbreak, vaccine coverage responds by increasing during and after the outbreak
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[389,390]. This vividly demonstrates the coupled nature of disease dynamics and vaccinating choices, completely aside from
whether we need to characterize this behavior as free-riding, or whether non-vaccinating individuals are aware that is what
they are doing. Individuals may not answer truthfully when surveyed about their motives for becoming vaccinated or not
becoming vaccinated, or more importantly they may answer very differently in surveys conducted during an outbreak, than
during a time of elimination. However, when we observe vaccinating behavior responding to changes in disease prevalence,
as in the Disneyland, California measles outbreak of 2014 [391] and other examples, we see the proof in the behavioral
pudding that vaccinating behavior and disease dynamics are strongly linked to one another, particularly near the elimination
threshold.

The Disneyland, California measles outbreak and similar outbreaks illustrate the important role played by social factors
in determining individual vaccinating choices. The influences of peer groups and medical professional opinions on vaccine
decision-making are well-documented [6,392]. Social contact networks can be mapped out using Bluetooth and other
technologies (see Section 11 for more details) [393]. Moreover, social influence has often been described as a contagious
process in itself, as ideas and behaviors spread through networks [394,395]. Therefore, social processes can be very naturally
modeled by defining processes on networks representing social contacts, and the methods of statistical physics concerned
with the properties of networks could therefore be very useful [396].

Because vaccine-generated herd immunity tends to create complacency toward vaccine programs in the way we have
described above, we expect vaccine hesitancy and outright vaccine refusal or vaccine “scares” to become more common
as eradication and elimination thresholds are approached for more vaccine-preventable infectious diseases. Moreover, we
have seen how the significant role of social context in influencing individual decision-making is very naturally represented
using the network paradigm. The study of coupled behavior-disease dynamics on networks could therefore help us address
this potentially growing problem [397]. In particular, mathematical models, often based on methods borrowed from physics,
can be a useful way of better understanding and predicting these coupled dynamics.

Human behavior is doubtless more difficult to mathematically model than the motion of a single billiard ball, for instance,
or many of the slightly more complex systems studied by physicists. However, at some levels of organization (in particular,
the aggregate population level) it is often possible to develop simple models that have some predictive power. For instance,
mathematical models incorporating behavior-disease interactions have been fitted to time series data of infectious disease
prevalence, and model selection approaches such as Aikaike Information Criterion (AIC) have shown that models thatinclude
behavior can explain the data more effectively compared to models that neglect behavior, with little or no parsimony penalty
[390,398,399]. Such models have also shown retrospective predictive power [390]. Other model fitting and data analysis
exercises without mechanistic representations of behavior have likewise shown the importance of accounting for behavior
when explaining observed epidemic patterns [400,401]. Similarly, the results of experimental games and surveys have been
useful in the parametrization of coupled behavior-disease models [402,403]. The advent of online social media promises
another source of data on both individual-level and population-level human behavior and this will be explored in greater
depth in a later section.

Hence, there appears to be a strong public health and scientific rationale for studying behavior-disease interactions. The
existing research shows that behavior and disease are strongly coupled to another. This coupling is particularly important
near the elimination threshold, hence vaccine refusal may become an increasingly important barrier to achieving elimination
and eradication, as logistic barriers recede into the distance. Moreover, models show promise to help us better understand
coupled behavior-disease dynamics, and comparing models with data have often shown that behavior is important for
understanding observed epidemic patterns and that behavioral models may have predictive power. Finally, these models
can show interesting dynamics that are similar to those studied in physics - such as phase transitions, oscillatory solutions,
and spatio-temporal patterns - and therefore similar methodologies to those used in physics may be helpful in their study.
In the next section, we will introduce some of the basic concepts of behavioral modeling that have been applied to study
coupled behavior-disease interactions.

7. Basic concepts in behavioral modeling

Much of the recent research on modeling the coupled dynamics of vaccinating behavior and disease dynamics has been
conducted by investigators with training in the natural sciences, including physics, applied mathematics and epidemiology.
These investigators have borrowed concepts from the social sciences in order to find behavioral models to couple with
the existing infection transmission models they are more familiar with. These behavioral models can be broken down into
three main categories: phenomenological models, game theoretical models, and psychological models. However, we note
that the distinctions between these categories are not always well defined, and the delineations depends to some extent
on subjective opinions. We also note that our goal here is to characterize different ways of doing behavioral modeling,
rather than different ways of modeling coupled behavior-disease interactions per se (see Refs. [404,405] for classifications
of coupled behavior-disease models).

7.1. Phenomenological models

Phenomenological approaches to modeling behavior mathematically describe the observed effects without positing
mechanisms behind the observed behavior. For instance, arguably the first model to capture the impact of adaptive human
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behavior on disease transmission used the mean-field ordinary differential equations [406]
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where S is the number of susceptible individuals, I is the number of infectious individuals, R is the number of recovered
individuals, y is the per capita recovery rate, and g(I) is the force of infection. The form of g(I) was chosen to reflect the
phenomenological impact of unspecified psychological effects. One of the functional forms explored in Ref. [406] included
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which saturates at high prevalence of infection, I. Such saturation of the transmission rate at high levels of prevalence could
occur if individuals reacted to high prevalence by reducing their contact rate through hand-washing or other means, which is
a plausible assumption for a sufficiently dangerous infectious disease. We describe this model as phenomenological because,
although it is motivated by psychological factors, the equations only describe the impact of such psychological factors on the
transmission rate without actually modeling specific psychological processes such as individual cognition or social learning.

Similarly, as noted in the previous section, a rapidly growing body of research uses the contagion metaphor to describe the
transmission of ideas and behaviors through social networks [394,395]. We classify these approaches as phenomenological
because they describe the effect of behaviors and ideas being transmitted between individuals, without positing the
mechanisms that might bring about this transfer. Contagion of ideas is a metaphor, and caution must be exercised when
applying metaphors to complex social phenomena. Vaccine scare and others panics undoubtedly share common features
with contagious processes, and using this metaphor can simplify and facilitate analysis of social processes. Moreover, the
contagion metaphor comes naturally to investigators experienced in modeling contagious diseases. However, the downside
of such metaphor is that it runs the risk of being too facile for some applications, by ignoring important subtleties of real-
world social behavior [407]. For instance, some social science literature distinguishes between descriptive and injunctive
social norms [408]. Descriptive social norms are those which describe what other individuals do, whereas injunctive social
norms describe what other individuals approve or disapprove [408]. It is moreover possible to distinguish between social
learning and social norms. Social learning theory emphasizes the social aspects of cognitive processes: individuals do not
learn many behaviors by cogitating in isolation from others, but rather they learn through a more efficient process of
imitating others [409]. An individual may use social learning to choose among descriptive or injunctive social norms that
seem to be most acceptable, or most successful. It is not immediately clear how the contagion metaphor applies to these
nuanced distinctions of how we learn ideas and behaviors from others. Indeed, empirical research seems to indicate that the
contagion metaphor (unsurprisingly) is not universally applicable [407]. Moreover, many of the usual criticisms of memetics
also apply to using the contagion metaphor for the spread of ideas [410].

However, in many contexts, these limitations of the contagion metaphor may not matter. Science works by adopting
the simplest explanation that captures the observed behavior (Occam’s Razor) and there are some contexts in which the
contagion metaphor may be perfectly adequate to explain the observations. This is often the value of phenomenological
models over mechanistic models. For instance, to prove that behavior influences the spread of infectious diseases, it is
sufficient to construct a phenomenological model that captures the impact of behavior and to show that it is superior
to models that do not capture behavior [390,398]. And, precisely because phenomenological models are often simpler in
structure, they may make it easier to understand how simple mechanisms such as information spread through networks
can give rise to complex emergent phenomena, such as control of infection spread in a spatially structured population [411].
In other contexts, mechanistic models may be desirable, and in the next two subsections we discuss two broad categories
of mechanistic models: game theoretical models and psychological models.

g = (154)

7.2. Game theoretical models

Game theory is the formalization of strategic interactions between individuals in a group of two or more individuals [412].
Game theory is well exemplified by the Prisoner’s Dilemma game (so called because it was originally explained as a decision
process made by two prisoners being interrogated in separate jail cells who must decide whether to confess their crime, or
stick to their story of being innocent). Each player can choose to either cooperate (‘C’) or defect (‘D’), and receives payoffs
depending on what s/he chooses, and what her/his opponent chooses (hence, the strategic interaction of the game). If
you, (the focal player) cooperates and your opponent also cooperates, then you receive $3 for instance (Fig. 19). But if you
cooperate and your opponent defects, you get no money. On the other hand, if you defect and your opponent cooperates,
you get a huge $10 payoff, but if your opponent also chooses to defect, you only get $1. Your opponent has the same payoff
outcomes, and therefore the payoff matrix is called symmetric.
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Fig. 19. Payoff matrix describing the Prisoner’s Dilemma, a classic example from game theory. Players must choose whether to Cooperate (C) or Defect
(D) against their opponent, with the payoffs for taking these two different courses of action also dependent on what their opponent chooses. The money
values are the payoff to the focal player, and the payoffs for the opponent are symmetrical hence payoffs for the opponent are the same, if they are treated
as the focal player instead.

What should you - the focal player - do in this situation? If your opponent cooperates, then it is optimal for you to defect
since you get $10 instead of $3. If your opponent defects, then it is also optimal for you to defect, since you get $1 instead
of $0. Therefore, regardless of what your opponent does, you should choose ‘D’, defect. Your opponent is thinking the same
way, so s/he also chooses to defect. Therefore you both defect and you get a payoff of $1 each. This is a shame, since if you
had both cooperated, you would each get $3, but the selfishly optimizing logic of maximizing personal gain in anticipation
of what your opponent will do prevents this socially (Pareto) optimal outcome. The Defect-Defect outcome is known as
a Nash equilibrium, since neither player has an incentive to unilaterally change his or her strategy away from Defect and
therefore we expect the Nash equilibrium strategy choices to be stable.

The Prisoner’s Dilemma has been used to illustrate the clash between what is optimal for the individual and what is
optimal for the group in a variety of contexts, including vaccination [413-415]. In the case of high levels of vaccine coverage,
non-vaccinators are the Defectors, who benefit from herd immunity generated by vaccinators without paying any real or
perceived cost of vaccination, while vaccinators are the Cooperators. However, this analogy only applies at high levels of
vaccine coverage, since at low levels of vaccine coverage it is optimal for individuals to accept at least some vaccination.

Game theoretical models of interactions between vaccinating behavior and disease dynamics typically define strategies
such as Vaccinator or Non-vaccinator, define payoffs for those strategies, and attempt to solve for a Nash equilibrium
[415-417] or the analogue from evolutionary biology, the evolutionarily stable state (ESS) [418]. The approaches may also
attempt to determine whether the Nash equilibrium is convergently stable, which indicates whether players will evolve,
over time, toward the Nash equilibrium. However, classical game theory may not be well suited to describing real-world
vaccinating behavior. It assumes that individuals are selfishly rational optimizers, but in fact, effects like social learning,
bounded rationality, and imperfect information are very important in vaccinating decisions [6,392], and this can impact
predicted behavior [390].

Research has explored the statistical physics of games such as the Prisoner’s Dilemma or the Snowdrift Game played
out on lattices [419-422], subsequently expanded to networks [423-430]. Likewise, game theoretical concepts have been
applied to vaccination decisions on networks [431-434]. However, the resemblance of this work with ‘game theory’
gradually fades, as investigators use increasingly computational approaches in their work (and less rigorous proof of Nash
equilibria) as a result of including more realistic cognitive processes. Such cognitive processes better reflect the importance
of social influences and social norms, and the reality of imperfect information which makes individuals use ‘rules of thumb’
to make decisions, rather than assuming individuals can predict the future. In the end, the only resemblance to ‘game theory’
may be the use of utility functions where individuals make decisions (either non-strategic, explicitly strategic, or implicitly
strategic) based on how much utility (a measure of preference) they will receive for different actions such as vaccinating
or not vaccinating [431-434]. Hence, these more complex game theoretically-inspired models blur the distinction between
‘game theoretical’ models and ‘psychological’ models, the latter of which is the focus of the next subsection.

7.3. Psychological models

Some models of the interaction between vaccinating choices and disease dynamics invoke psychological theory in order
to formulate mechanisms underlying vaccinating decisions. An example of a model that uses social and psychological
assumptions is the following SIR model modified to include mechanistic modeling of vaccinating behavior according to

an evolutionary game theoretical approach [435,436]:

ds
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where S is the proportion of susceptible individuals, I is the proportion of infectious individuals, x is the proportion of
individuals who adopt the vaccinator strategy, u is the per capita birth/death rate, 8 is the transmission rate, y is the
recovery rate, hi is a rescaled parameter that essentially captures the rate of social learning, and w is a rescaled parameter
that essentially captures the relative perceived risk of the disease compared to the vaccine. In this model, individuals are
not perfectly rational optimizers because they only switch strategies through social learning (h), after they have interacted
with individuals playing a different strategy and moreover, they make the ‘rule of thumb’ assumption that their probability
of eventually being infected depends on the current proportion of infectious persons, I, rather than assuming that they
could solve the SIR equations explicitly and figure out their chances of becoming eventually infected. This approach
can be straightforwardly extended to spatial settings, where individuals imitate successful strategies of their network
neighbors [432]. A similar approach has also been adopted in models of coupled human-environment systems [437,438].

Other approaches incorporate specific theories from psychology and social psychology in order to formulate mechanisms
in coupled behavior-disease models. For example, random walk subjective expected utility (SEU) theory posits that
individual decision-making can be modeled as a biased random walk in a one-dimensional space of possible states with
two decision outcomes on either end of the space. Individuals move toward one decision or the other depending on the
probability of certain outcomes of their decisions, and the subjective utility associated with those outcomes, as formulated
through a decision tree [439]. Once a certain threshold has been crossed close to one end of the one dimensional space
or the other, the individual has finally decided on a course of action, and takes it. This has been applied to vaccinating
decisions for influenza on a contact network, to explore how decisions about influenza vaccination and decisions about
contact precautions interact with one another through their mutual coupled influence on disease dynamics [440].

Another relevant theory from psychology is prospect theory, which mathematically formalizes the phenomenon whereby
humans tend to over-estimate the probabilities of very rare events. Since vaccine adverse events and disease complications
are rare events, the relevant of prospect theory to vaccinating decisions is obvious. Prospect theory has been applied in
mean-field models of coupled vaccinating behavior and disease dynamics for pediatric infectious diseases, and has been
found to significantly impact model predictions [441].

A third example is the application of Dempster-Shafer theory, which is a general statistical framework (closely related
to Bayesian statistics) for dealing with decision-making under uncertainty [442]. This theory has been incorporated into
models of coupled dynamics of vaccinating decisions and disease dynamics, where investigators have used the theory to
explore how awareness of disease-related events and vaccine-related events spreads through a group of socially connected
individuals [443].

8. Behavior-vaccination dynamics in well-mixed (mean-field) populations

The dynamics and control of vaccine-preventable infectious diseases under voluntary vaccination can be quite complex,
because of the role of human decisions. These are in turn based on information and rumors gathered on: (i) the perceived risks
of getting the disease; (ii) its spread; (iii) the perceived risks of being affected by vaccine-related side effects. This complexity
becomes apparent in the modeling phase, due to the intrinsic difficulty of quantitatively representing human behavior, and
is mirrored by the features of the resulting mean-field models, whose solutions are radically different from those of the basic
model with mandatory vaccination illustrated in Section 3. Here we review the recent literature on the dynamic implications
of the introduction of human behavior in mean-field SIR-like models for vaccine preventable infections under voluntary
vaccination. The presentation broadly follows the categorization proposed in [444] (also refer to Section 7 for classification),
contrasting phenomenological, or behavior-implicit models of vaccinating behavior, with behavior-explicit ones, such as
psychological or game-theoretical models. However, this categorization is not always effective from the modeling viewpoint
since, under certain conditions, the various approaches can become mathematically indistinguishable. More mathematically
focused reviews can be found in [444-446].

8.1. Phenomenological SIR models with information-dependent vaccine uptake

A general phenomenological framework is represented by the SIR model with information-dependent vaccination
introduced in [447-450]. The underlying rationale is that the possibly complex behavioral rules parents follow when
deciding whether to vaccinate or not their children will often translate into simple relationships between the individual
probability to vaccinate, i.e. the vaccine demand, and the gathered information on infection spread. These models therefore
postulate relatively simple feedback rules whereby trends of infection (and of vaccine adverse effects, VAE) can affect the
current vaccine uptake, eventually feeding-back on infection dynamics.

These ideas led to the following modified SIR model with vaccination by a perfect vaccine [447] (note that for basic
demographic and epidemiological quantities we use the notations adopted in Section 3)

§'=n (1 —xM)) —us — B©OSI, (156)
I'=1(B©)S—(u+y), (157)

where the vaccine demand x(.) is an increasing function of a new variable, M, which summarizes the information available
on current and/or past disease trend, used e.g. to formulate expectations about future risks. Here we considered uniquely
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vaccination of newborns, however models considering ‘delayed’ vaccination strategies targeted also to later ages, i.e. of the
type

§'=p1 -8 —yM)S — BOSI, (158)

where ¢(M) is an increasing function of M, have a qualitative behavior that is similar to the one of the model (156)-(157)
[447].

Focusing on the perceived risk of disease as the driving force of vaccination decision, M might be any continuous and
increasing function g of the current infection prevalence or incidence. For linear g it would hold M = h(t)B(t)SI (with
h(t) > 0)or M = k(t)I (with k(t) > 0). Namely, the latter expression defines the perceived risk of serious disease as the
product of the perceived risk of infection, proportional to infection prevalence I, times a constant perceived risk of serious
disease given infection.

More realistically M also depends on past values of state variables, due e.g. to time-delays in the reporting/acquisition of
information, and mainly to the fact that parents might also include their experience of past disease trends, etc. In this case,
M can be modeled as follows

t
M(t) :f g(T)K(t — 1)d, (159)

o0

where the delaying kernel K [451] is a probability density function. Besides the trivial case K(t) = 4(t) (yielding back the
unlagged case), the literature has focused on kernels allowing reduction to ordinary differential equations [447-450,452],
in particular on the exponentially fading memory kernel K(t) = aexp(—at), which describe an exponential decay of
the “memory” of agents, with characteristic memory length T = 1/a [451]. Another kernel investigated in [450] is the
acquisition-fading kernel K(t) = a;ay(a; — ay)~'(e~"t — e~%%), This unimodal kernel is null at t = 0, and it mimics not
only the exponential decay of memory, but also an initial phase of information acquisition.

Finally, function x can be written as [447,449,450]:

x(M) =x9 +x (M), 0 <x <1, (160)

where xj is a non-null baseline constant coverage, mirroring awareness of disease severity also in absence of spread, and
x1(M) is a sufficiently regular increasing function, with x(M) < 1.

For the sake of simplicity, from now on we shall assume that the information index M only depends on (current or past
values of) I, the so called prevalence-dependent case [444,453]. In the current case this assumption implies that epochs of
increasing prevalence would rapidly promote an increase in vaccine uptake in children (and vice-versa).

Two main substantive questions arise about model of Egs. (156)-(160), namely how prevalence-dependent vaccination
affects infection control on the one hand, and, on the other hand, how it might affect the dynamical pattern of infection and
vaccination, e.g. by triggering oscillations. From now on we always assume that in absence of vaccination the infection is
endemic, i.e. Ry > 1.

8.1.1. Implications of information-dependent vaccination: elimination “mission impossible”

The basic SIR model with constant mandatory vaccination x at birth shows a simple threshold behavior governed by the
vaccine reproduction number (VRN) Ry = (1 — x) R such that if Ry < 1 (i.e.x > x.) then the infection can be eliminated,
otherwise the disease remains endemic. This simple result no longer holds under prevalence-dependent vaccination which
makes elimination impossible. This is a general fact holding regardless of the form of the information index M, of the memory
kernel K (.) and of the nature of the transmission rate 8 (t). This may be inferred by investigating the local as well as the global
stability of the disease-free equilibrium (DFE): DFE = (1—Xg, 0, 0) of model in Egs.(156)-(160), yielding the following global
eradication condition

_l—Xol
T u+vy

2
/ Bwdu <1, (161)
0

(where B represents the average VRN when the vaccine uptake is set to the baseline coverage xo) while if B > 1 the
DFE is unstable. For constant 8 the condition B < 1 is equivalent to the condition X, > X, in other words elimination
can only be achieved if the baseline vaccine uptake lies above the elimination threshold. Actually, it is a documented fact
that western countries have been able to maintain very high coverages - i.e. above the estimated elimination threshold -
against e.g. polio and diphtheria for decades. This however has been possible under situations where these vaccinations
were essentially mandatory. Whether similar results could be maintained under fully voluntary vaccination regimes seems
to be quite remote, given that scenarios where prevalence is very small would also make the perceived reward of vaccination
to vanish, so that people would start escaping from vaccination.
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8.1.2. Memory-triggered oscillations

Given that infection elimination is ruled out, the question turns into the types of dynamics that might be triggered by
prevalence-dependent vaccination. For Ro(1—xg) > 1and constant g, the system of Eq. (156)-(160) has a unique endemic
equilibrium EE = (S, I, Me).

In the unlagged case the system becomes 2-dimensional and it is easy to prove that the endemic state is globally
asymptotically stable (GAS), so that only damped oscillations are possible [447]. Instead, in the delayed case, stable
oscillations - via Hopf bifurcation of the endemic state — already appear under the simplest pattern of delay, namely the
exponentially fading memory. In particular, assuming as key parameter the inverse of the average memory/delay length
a = 1/T, and taking for simplicity g(I) = kI, it holds that [447] if and only if

(Ble + w)? — Bleptkx;(Me) + 2 (Ble + 1) v/ Ble(y + 1) < 0, (162)

there is a range [a1, a,] for a such that: (i) for a € (a;, a,) Yakubovich oscillations [454] occur via Hopf bifurcations at a,
and ay; (ii) for a ¢ [a,, a;] the endemic equilibrium EE is locally stable. The global stability of EE, suggested by numerical
simulations, is nontrivial and it has been investigated in [455] by means of the Li-Muldowney geometric theorem, which
extends the Dulac-Bendixon theorem.

Note that Eq. (162) shows that sustained oscillations can appear only if x; (M,) is sufficiently steep, that is only if the
behavioral response of vaccine uptake to changes in the perceived risks is sufficiently intense. In this case oscillations occur
in an appropriate intermediate window of the average delay 1/a. These results continue to hold for more realistic patterns
of delay, such as acquisition-fading and Erlangian kernels [154,447-450], for generic increasing g(I) functions [449], in
presence of disease-related mortality and a non-constant population [449], and when the incidence of VAE is taken as the
key determinant of the vaccine demand [154]. Finally, as shown in [456], oscillations in behavior-depending vaccination
models are also observed in absence of memory mechanisms but in presence of disease-intrinsic delays, such as in the SEIR
model (the latent period being, of course, equivalent to an exponentially distributed delay in the onset of infectivity).

8.1.3. Dynamic pattern for a measles-like infection

We illustrate some of the above described dynamic oscillatory patterns, under the parameter values adopted in
Section 3.6. As for behavioral rules we choose g(S, I) = I, and a Michaelis-Menten-type [ 128] coverage function x;(M) =
(1 —xo — &)DM /(DM + 1) where D > 0 is a shape parameter tuning the reactivity of x;, and 1 — xo — & represents the
maximal coverage arising for large DM values. Behavioral parameters are chosen in the oscillatory region, with the average
delay T = 1/a set to 4 months, xo = 0.75, ¢ = 0.01 and D = 15 x 10 The selected values of ¢ and D allow, in principle,
the vaccine uptake to reach values close to 100% during epochs of high perceived risk.

The model is initialized at time t = 0 at the endemic state determined by a constant coverage set at the baseline level xq.
Fig. 20 reports the transient (left-hand side) and long-term (right-hand side) time paths of the ERN Rg(t) = RoS(t) (top),
of the infective prevalence (medium), and of the overall vaccine uptake x(M) = xq + x;(M) (bottom), jointly with its time
average. State variables converge to a stable limit cycle in about 150 years, with a long-term inter-epidemic period around
12 years, i.e. about 2.5 times the pseudo-period of the SIR model with constant coverage x, = 0.75. The most striking fact
is that though the vaccine uptake x(M) reaches levels as high as 96% during epochs of high perceived risk, this is totally
insufficient for elimination, as witnessed by the average long-term coverage, which remains below 80%, i.e. well below the
critical coverage x, ~ 0.93. This oscillatory nature appears to be intrinsic to SIR systems with delayed prevalence-dependent
vaccine demand: epochs of increasing prevalence will yield, after a certain period of time, an increase in the demand for
vaccines, which will in turn reduce infection prevalence, therefore eventually feeding-back on the vaccine uptake and so on,
as first noted in [453].

8.1.4. Further extensions and remarks on phenomenological models

The information-dependent framework is a flexible one from several standpoints. As mentioned above, a model
analogous to the one presented here has been applied to investigate the effects of VAE [ 154] which, in the current western
situation where incidence of most infections is persistently low, appear to represent the most important component of the
vaccine demand. In particular, in [154] the key determinant of the vaccine demand was the information on the incidence
of VAE. Role of VAE as vaccination determinants will be considered more in detail in the behavior-explicit models of next
subsection. However, many other applications are possible. For example the framework in [447] was also used to consider
the possibility that parents adopt the strategy of delaying the age at vaccination of their children, later extended in a more
general behavior-explicit setting in [457].

More important, the phenomenological model of Eqs. (156)-(159) represents a general form in that, as we have remarked,
also behavior-explicit (e.g., game theoretic) formulations for vaccine uptake eventually collapse into the same structure,
once the vaccine uptake function resulting from the adopted formulation is set within the framework of a dynamic
epidemiological model [452,453]. For example, game-theoretic approaches (discussed in Section 8.3) often yield step-
wise best response behavioral functions. The simplest example for the vaccination problem would be not to vaccinate with
probability one when the risk of infection is below a certain threshold, to vaccinate above that threshold, and to vaccinate
with a certain probability when the risk is exactly at threshold. However, a number of reasons (e.g., bounded rationality)
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Fig. 20. Dynamics of model in Egs. (156)-(160) for g(S,I) = I under an exponentially fading kernel (T = 4 months) and a Michaelis-Menten-type
prevalence-dependent component of vaccine uptake (D = 500). Transient (left-hand side) and long-term (right-hand side) paths of: (top) effective
reproduction number R = RyS; (middle) infective prevalence I (normalized to its equilibrium value); and (bottom) overall vaccine uptake x(M) (compared
to its time average given by the flat line in the right-bottom graph). Ry is equal to 15.

Source: Reprinted figure from Ref. [450].

suggest to approximate the best response function by a corresponding smoothed responses [458]. The shape of smooth
response function is typically analogous to that of function x;(.) used here.

8.2. Behavior-explicit psychological models of vaccinating behavior

Most available psychological models of vaccinating behavior in previous sections relied on what we will term Imitation
Game Dynamics (IGD), an important class of models developed within Evolutionary Game Dynamics Theory (EGDT)
[459-461], which is a powerful approach to modeling behavior by setting ideas from game theory into a population dynamics
framework [459-461]. Imitation represent a main avenue through which the different strategies enacted by players can
spread within a population, through mutual learning between individuals [462]. The first application of IGD to investigate
vaccinating behavior and its feedback on infection dynamics and control was developed in a seminal paper by Bauch [462],
later extended [463] by a more general formulation which will prove useful to link the class of imitation-based models with
the phenomenological models of previous section.

8.2.1. Imitation dynamics

IGD is usually presented using the framework of game theory, both in its economic and in bioevolutionary standpoints.
However, we note that at its very core there is again a mass-action diffusion process based on statistical physics [461]. Let
us consider a binary decision problem, i.e. one for which only two, mutually exclusive, strategies are played: strategy V and
N (these might for example be to Vaccinate, and Not to Vaccinate). Let us also assume that individuals can switch from the
strategy they are currently playing to the alternative one by learning and imitating after social encounters with subjects that
are playing the other strategy. Considering a population of constant size, and indicating with yy and yy the fractions of the
N and V sub-populations (yy + yy = 1), leads to the following mean-field double infection model:

Yy = —Kuiwynyv + Knvynyv. (163)
Yy = —Kwvynyv + Knynyv, (164)

where the coefficients Kyy, Kyy have a clear “epidemiological” interpretations as the strategy-specific transmission rates
following social contacts with individuals playing the other strategy. Following EGDT [461], these coefficients are
proportional to the perceived benefit, or payoff, arising from strategy switching. Since yy = 1 — yy, it follows

Yy = Knv — Kun)yv (1 = yv). (165)
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Note that if Kyy — Kyy is strictly positive (negative) in all the state space, strategy V (N) will eventually prevail, by spreading
to the entire population with a logistic-type dynamics, as is intuitive given that the quantity Kyy — Kyy > 0 must be
proportional to the perceived net payoff gain when switching from strategy N to V. More interesting, dynamic situations
arise when the net payoff Kyy — Kyy has non-constant sign, which happens when it is made dependent on other state
variables of the system, as is the case for vaccination games [399,457,462-465].

8.2.2. Basic SIR models with imitation-based vaccinating behavior

Unlike previous subsection where the vaccine uptake at birth x was taken as a “static” function of I (and/or of S), we
assume that x is a state variable determined by the switches of parents between strategy N (not to vaccinate) and V
(vaccinate) according to the above described IGD. Therefore, x(t) actually represents the proportion of parents favorable to
vaccination at time t, which is taken as a proxy for the actual emerging vaccine uptake. Setting y,, = x, yields the following
family of mean-field SIR models with vaccination [110,463]

S' = u(1 —x) — puS — BSI, (166)
I'=BSI— (u+ p)l, (167)
X = k1 AEx(1 —X), (168)

where the term Kyy — Kyy has been represented by the product between the scale coefficient k1, tuning the speed of the
imitation process, and the net expected payoff gain of vaccination, AE. The latter can in turn be defined as the difference
ey — ey between the vaccinator payoff and the non vaccinator payoff, or alternatively as C, — Cy where C; = —e; represents
the corresponding cost.

Note preliminarily that irrespective of the specific form of AE(t), the family of models in Egs. (166)-(168), always has
the following three equilibria: (i) a disease-free state with no vaccinators A = (1, 0, 0), which is unstable due to the above
assumption that &y > 1; (ii) a pure-vaccinator disease-free equilibrium B = (0, 0, 1) where everyone is vaccinated;
(iii) the pre-vaccination endemic equilibrium C = (Ss, Isig, Xsir) = Ry, (1= Ry /(e + ¥), 0). On the other hand,
the stability of B and C as well as the existence of further equilibria (induced by the behavioral component) depend on the
chosen form of the perceived payoff gain AE(t).

8.2.3. The baseline SIR model with imitation-based vaccinating behavior

The seminal study [462], motivated by need to understand the causes and dynamics of vaccine scares, such as the pertussis
or the MMR vaccine scares, rests on two main hypotheses, namely: (a) a prevalence-dependent cost of not vaccinating (see
Fig. 21), of the form Cy = rymiI(t), where miI(t) is the current perceived risk of infection (taken as an estimate of the actual
FOI A = BI),and r; > 0 is the perceived (conditional) risk of serious disease given infection; and (b) a constant cost of
vaccinating Cy = ry > 0, representing the perceived risk of suffering a VAE per single vaccination. Hence

AE(t) = nmlI(t) —ry =1y (PI(t) — 1), (169)

where ¥ = mr;/ry is a measure of the relative cost of disease with respect to that of vaccination. Based on these
hypotheses, a number of substantive results were shown [462]. First, the pure-vaccinator equilibrium B is unstable, reflecting
the fact that in a wholly vaccinated population, prevalence is equal to zero and therefore the payoff of vaccination is
strictly negative (AE = —ry), removing incentive to vaccinate, so that vaccination will start declining. Second, there is
a partial vaccinator endemic state D, that is an endemic state with positive vaccine uptake D = (JRO’ 1 19‘1,?), where
Xx=04+y/n (IS,R - 19‘1). The equilibrium coverage X is meaningful only for values of the behavioral parameters ensuring
that Ip < Isp, i.e. such that the corresponding endemic prevalence is lower than the prevalence observed in absence of any
vaccination. This in turn requires ¥ > IS’IRl, meaning that D exists only for sufficiently high levels of the relative cost of
disease. Finally, at ¢ = @y = I, there is a transcritical bifurcation between C and D. In words, given that endemic infection
for which at some stage a vaccine becomes available, then: (i) if the relative cost of the infection is low (i.e. the perceived
cost of vaccination is high with respect to infection) then the vaccine would not be adopted due to lack of incentive; (ii) if the
relative cost of infection is high then the vaccine would spread in the population, therefore destabilizing the pre-vaccination
endemic state C, and sustaining the appearance of the new, locally stable, endemic state D with positive vaccination. In turn,
the stability of D depends on «1(¥ — %), showing in particular that appropriately large values of the imitation coefficient
can yield sustained oscillations by Hopf bifurcation of D, indicating that fast social learning is a source of oscillations.
Previous results add robust evidence, based on a behavior explicit model, to those reported in Section 8.1, indicating that
prevalence-dependent vaccinating behavior represents a serious threat for programs aimed to infection elimination.

8.2.4. An alternative model with myopic perception of the cost of vaccine adverse events

The hypothesis made in previous subsection that the perceived risk of vaccinating is constant, implies that the public
correctly evaluates this risk, as the ratio between total reported VAEs for a given infection, and the total number of
vaccinations for that infection per unit of time. However, due to the current high levels of herd immunity in modern
industrialized countries, the perceived risk of serious disease from many infections is currently very low, while the large
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Fig. 21. Trends in pertussis vaccine uptake (dashed line) and case notifications (solid) in England and Wales 1967-2003 motivating the idea of prevalence-
dependence in vaccine uptake: (a) absolute levels, (b) with vaccine uptake represented as deviations from a linear least-squares fit. Note in particular that
when coverage went abruptly down due to vaccine scare (mid seventies), large epidemics restarted, possibly uprising the perceived risk of infection, and
eventually restoring vaccine uptake at high levels. Nonetheless symptoms of prevalence-dependence persist, though at a lower scale, even after the overall
relapse, as evidenced in (b). Moreover, the initial (pre-1975) persistently high coverage, bringing incidence to low and declining levels, might have sharply
increased the number of VAE, eventually triggering the vaccine scare.

Source: Reprinted figure from Ref. [462].

number of vaccinations administered unavoidably yields a steady flow of VAEs [466]. The VAE burden might then make the
perceived risk of suffering vaccine side effects (VSE) higher than risks perceived from infection.

Therefore, in [463] it was assumed that the public myopically evaluates the risk of VSEs by available information on the
total number of VAE, which is proportional to actual vaccine uptake x. In particular, it was investigated the case Gy = ax,
defining the perceived cost of vaccination as the product of the (perceived) probability of being vaccinated, times a perceived
probability of suffering VSE given vaccination. Similarly, Cy is taken as an increasing function of infection prevalence:
Cy = h1((t)). Note that the case h;(0) > 0 is a realistic one as it might represent a scenario of local elimination where
however infection re-emergence (e.g. by importation of cases) is feared.

The resulting dynamic equation for x(t) is

X =k () —x)x(1—x), (170)

where k = k1o, and h{(-) = h(-)/a.
Interestingly, if imitation dynamics is fast compared to infection dynamics, i.e. « > (i + y), then a quasi-stead state
approximation yields

x(t) ~ min (h (I(t)) , 1), (171)

i.e. the information-dependent model with current information (i.e. Egs. (156)-(160)) presented in the previous subsection
is recovered. In other words, the phenomenological model [447] is a special case of the imitation-based case when the
imitation process is fast.

Comparing with the baseline model of previous Section 8.2.3, we note that the alternative model of Eqs. (166)-(170)
also has the equilibria A (unstable), B (unstable) and C. Unlike Section 8.2.3 [462], the pre-vaccination endemic equilibrium
C is always unstable, reflecting the fact that introduction of a vaccine will always be successful, due to the low perceived
cost of vaccination at low coverage levels. Moreover, two further equilibria are induced by the inclusion of behavior i.e., a
disease-free equilibrium E with positive vaccine uptake (disease free partial vaccinator equilibrium) E = (1 — h(0), 0, h(0)),
and the partial vaccinator endemic state D

D= (Ry" I, h (L)), (172)
where R¢ = B/( + y) is the basic reproduction number of the infection, and I, is the unique solution of the equation
Mty

"

Eq. (171) alone can explain the behavior of the disease-free equilibrium E. Indeed, from X' > «(h(0) — x)x(1 — x) it
follows that for large times x(t) > min(h(0), 1) and in turn: if h(0) > x. then x(t) — 1, i.e. E is globally attractive.
Moreover, linearizing at E it follows that if h(0) < x. then E is unstable. Therefore, in case of myopic evaluation of VAE

hi)=1-R,' — I. (173)
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Fig. 22. Oscillatory dynamics of the SIR model with vaccination decisions governed by Eq. (170) for a linear h(I) of the form: h(I) = 61,0 > 0. The
graphs report the dynamics of the vaccinating proportion x(t) (top) and of infection prevalence I(t) (bottom), for different values of the rescaled imitation
coefficient «: k = 0.0005 day~' (left), x = 0.002 day~' (center), k = 0.0035 day ' (right). The system is initialized from the pre-vaccination endemic
levels of variables S, I and from x(0) = 0.95. Demographic and epidemiological parameters are: i = (1/75) year™', y = 1/7 day~!, Ry = 10, =15,000,
k = 0.002 day~ .

Source: Reprinted figure from Ref. [463]. With permission from Elsevier.

elimination turns out to be possible, but only if the perceived cost of disease associated with infection re-emergence is so
large to bring the vaccine uptake in excess of the elimination threshold.

As all equilibria are independent of «, it is natural to choose « as a bifurcation parameter. Not surprisingly, the dynamics
around the partial vaccinator endemic state D depends on the steepness of function h(I) at D. Namely, it exists a threshold:

(A BL) (4 Blo) +24/BL(n + 7))
B Blep

such that (i) if i’ (I,) < th then equilibrium D is locally stable irrespective of the imitation speed «; (ii) if b’ (I,) > th
then there is a range of values (k1, k) for the imitation speed « such that for x € [«1, k3] and the system’s orbits
x(t) = (S(t),I(t), x(t)) are oscillatory (i.e. recurrent epidemics are predicted) in the sense of Yakubovich [454], which
onset via Hopf bifurcations at x; and at k.

Note that unlike the model reported in Section 8.2.3 where sustained oscillations around the endemic state were triggered
by large values of the imitation coefficient k¥ [462], in the present model oscillations occur in an intermediate window of
values of «. This suggests that both slow and fast imitation might be stabilizing forces, quite similarly to what is reported in
Section 8.1.2 for the phenomenological model. This is not surprising since x(t) depends on I(t) via a differential equation,
i.e. x(t) “follows” h(I(t)) with an appropriate delay.

Possible dynamics of the system for some parametric constellations promoting sustained oscillations are illustrated in
Fig. 22 for a measles-like infection. A noticeable fact is that large levels of the imitation coefficient «, besides triggering
very long inter-epidemic periods, can promote long-lasting epochs where the vaccine uptake x lies above the elimination
threshold x..

Modeling irrational behaviors. A positive aspect of the imitation game-based seminal models [110,462,463] is that they
parsimoniously describe, by means of a classical tool of game theory, the complex social learning underlying the parental
decision to vaccinate their children. Moreover, broadly speaking, the imitation process represent a first deviation from full
rational behavior. However, models [110,462,463] are based on an important but implicit assumption, i.e. that the “force”
driving the vaccine non-acceptance is para-rational. Indeed either it is constant (and fully dictated by a rational thought,
as in [462]) or it depends on the information on vaccine side effects (as in [110,463]). In reality in doing this the models
[110,462,463] miss the fully irrational behavior underlying the periods of vaccine scares.

In [464] Bauch and Bhattacharyya go an important step further by assuming that the “anti-vaccination force” (which
depends on the vaccine risk perception) is an empirical function mimicking the rumors-driven sudden rise, stay and decay
of vaccine scare. As far as the “force” favoring the vaccine uptake (i.e. the feedback from disease prevalence) they assume

th
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that it is proportional to the time-series of notified cases. The resulting dynamics for the fraction of vaccinated newborns
x(t) is thus of the type:

X = kx(1 —x)(uL(t) — w(t)), (174)

where L(t) is an interpolation of notified cases, u is a proportionality constant and w(t) is an appropriate unimodal function.
Interestingly, the authors consider also other simplified models,

(a) absence of social learning:

x(t) = ul(t) — w(t); (175)
(b) absence of disease driven feedback:
x() =1—-ow(t); (176)

(c) absence of pro-vaccination “force”:

X = kx(1 — x)(—w(t)); (177)
(d) explanatory model with force pro-vaccine depending on the state variable I (as in [462]):

X = kx(1 = x)(I(t) — w(t)), (178)

complemented by an SIR model with vital dynamics, of course.

They applied the various models, and various models of the function w(t), to available data concerning the whole cells
pertussis vaccine scare and to data on the MMR vaccine scare. These multiple comparison not only were done in order to find
the best fitting and predicting model, but also in order to disentangle the effect of each component: the social learning, the
kind of curve w(t) modeling the vaccine scare; the type of disease-related feedback. They obtained the following interesting
results: (i) the best fit to available data were obtained by the model of Eq. (178) including both the disease-related feedback
and the social learning mechanism; (ii) this model also produced good predictions, up to 10 years in the case of pertussis
data; (iii) the model of Eq. (174) performed better than the simplified models.

8.2.5. Delaying vaccination as a further strategy

A wide empirical evidence suggests that parents often adopt the strategy of delaying their children’s age at vaccination
against common vaccine preventable infections ([457] and references therein), mostly because they fear that the immune
system of a newborn is still too weak to adequately tolerate immunization. Bhattacharyya and Bauch [457] proposed
a minimal 3-strategy model, with two possible vaccination rounds, the first at birth (age 0), and the second one at a
fixed subsequent age a; set to four years [457], always by a perfect vaccine. This is remindful of the two-rounds MMR
(measles—-mumps-rubella) vaccination, with an early first dose and a second one offered during the childhood to reach
unvaccinated or non-successfully vaccinated children. Parents can opt between the following strategies: (i) timely vaccinator
(V) i.e. vaccinate at the first round; (ii) delayer (Del) i.e. vaccinate at the second round; (ii) Non vaccinators (N). The three
corresponding fractions of the population are denoted as Xy, Xpe; and xy = 1 — Xy — Xpe. The adopted model is a two-
age classes meta-population version of the SIR endemic model, with exponential transitions between age groups and
inhomogeneous age-specific mixing (see Section 3.9).

Individual learn and switch between strategies according to an IGD driven by the constant perceived risks of VAE from
vaccination at ages 0 and a; respectively, denoted by ry 1 < rv 3, and by the direct prevalence-dependent perceived risk
of disease in the two age groups [462]. The latter depends on the corresponding risks n; (i = 1, 2) of acquiring infection
in age groups i = 1, 2, that are modeled as follows n; = x;l;/(p1 + I1), namely as increasing and saturating functions of
the (perceived) group-specific infective prevalence I; (i = 1, 2) to mirror two stylized facts, namely that (i) social contacts
relevant for transmission are largely assortative i.e., tend to mostly occur with individuals of the same age group [147], and
(ii) agents form their perceptions of risk according to simple heuristics. As for payoffs: (i) the timely vaccinator payoff only

includes the vaccination cost at age zero, i.e. Cy = —ry 1; (ii) the delayer payoff includes the sum of the cost of acquiring
disease in period 1, plus the cost of vaccination at age 2, which arises only if he/she escaped infection during period 1,
i.e. Cpey = —1ymq — ry(1 — ny), (iii) the non-vaccinator payoff is Cy = —rin; — rin2(1 — n4).
The resulting dynamics of state variables xy and xp,; (the dynamics of xy is given by xy = 1 — Xy — Xxpe) obey
Xy = Kky(AEy peiXvXpel + Xy (1 — Xy — Xpe) AEy ), (179)
Xpet = Kpei (Xpel (1 — Xy — Xpet) AEpel,n — XpetXv AEpel,v), (180)

where (similarly to the previously illustrated IGD-based models) the quantities AE;; = e; — ¢; = GG — C; (i,j = V, Del, N)
represent the pairwise perceived payoff gain resulting from social encounters between individuals belonging to group i and
group j, resulting from the difference of the related costs. Quite reasonably Egs. (179)-(180) postulate a simplified mixing
pattern between players of various strategies (compared to the mixing relevant for infection transmission), as indeed parents
of children eligible for vaccination represent a restricted subgroup of the population in age group 2. The full model is obtained
by adding to Eqs. (179)-(180) the equations for susceptible and infective individuals in age groups 1,2.
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The qualitative behavior of the model is more complicated than the baseline model, although basic intuitions from
Section 8.2.3 explain well the main results. For example, in addition to the unstable infection free-all vaccinators equilibrium,
there is an unstable endemic pure delayer equilibrium with I, = 0. This further confirms the impossibility of disease
elimination under prevalence-dependent cost of infection.

Several mutually exclusive other locally stable endemic states exist, including the pre-vaccination equilibrium and
various mixed states with sub-optimal vaccine uptake combining different proportions of individuals following the different
strategies. Interesting oscillatory regimens were observed in the simulations: individuals switch between strategies
depending on the pattern of prevalence, with frequently observed anti-phase oscillations between strategies V and Del,
e.g. epochs of high prevalence incentivate timely vaccination, which in turn reduce prevalence, thereby promoting the
delayer attitude, which in turn favors a restart of prevalence in age group 1, and so on. However, inclusion of the third
strategy has a stabilizing effect with respect to the basic (V-N) strategy of Section 8.2.3 [462]. The model also offers some
insight on the role of the delayer strategy during epochs of vaccine scare.

8.2.6. Dynamical effects of social norms

Previous models assuming prevalence-dependent vaccinating behavior predict that elimination is impossible since
vaccine uptake eventually sets around some equilibrium levels below the critical threshold x.. However, in western countries
vaccination coverage for certain diseases such as poliomyelitis and diphtheria attained and maintained very high levels,
ensuring persistent local elimination, even in countries with voluntary vaccination. This suggests that further behavioral
mechanisms are at work. A number of psychological theories relevant for health decisions such as the theory of planned
behavior [467] and its extensions, have stressed the importance of social pressure as a determinant of individual behavior.
In particular, our own perceptions of what persons relevant to us might think we ought to do are relevant—the so-called
injunctive social norms (ISNs) [468] might affect vaccinating behavior in a number of ways, i.e. by building self-legitimation
for non-vaccinators, by enforcing their cohesion, or by increasing the conformism of vaccinators as a majority.

Oraby et al. [399] included ISNs into the IGD model of Section 8.2.3 by assuming, in line with the game-theoretical
work by [469], that ISNs add a new component to payoffs which is proportional to group pressure, i.e. to how many other
people in the population are also playing that strategy. The perceived payoffs for nonvaccinators and vaccinators become:
Cy = —riml(t)+8¢(1—x),and Cy = —ry + 8o, Where §p tunes the effects of social pressure on payoffs, taken as symmetric.
Note that social pressure has the potential to mitigate, or even to sign-reverse, the costs of the two strategies.

After some rescaling, this yields the following equation for the vaccinators proportion x

X =k1x(1 = x)(I — 0 — 8(1 — 2x)), (181)

which, differently from Section 8.2.3, emphasizes the relative cost of vaccination and the relative strength of social pressure
with respect to the cost of disease, given by w = ry/(r;ml) and § = 8o/ (r;ml) respectively.

With respect to the model in Section 8.2.3 considering only the direct costs of vaccination or not, the inclusion of ISNs
yields a far richer dynamics. First, besides the four basic equilibria A, B, C, D observed in Section 8.2.3, there is a fifth
equilibrium E induced by social pressure, where S = 1 — x;, Iy = 0,x; = 27'(1 4+ w/8), with x; > 1/2. However,
this disease free partial vaccinator equilibrium, which exists only if § < o (i.e. if the strength of group pressure is smaller
than the relative cost of vaccination) is always unstable. Second, the pre-vaccination endemic state C = (S, Isig, Xs;g = 0)
is locally stable if s < w4+ 8, i.e. if the perceived cost of disease is small. Third, if § > w (§ < w), i.e. if the strength of group
pressure is larger (smaller) than the cost of vaccination, then the pure vaccinator equilibrium B is locally stable (unstable).
As a consequence of the above two stability conditions, both B and C can coexist in their stability ranges, i.e. the system
exhibits bistability and its mathematical behavior will depend on the initial conditions (see Fig. 23). Bistability phenomena
also involve the partial vaccinator endemic state D (see Fig. 23). Finally, oscillations due to destabilization of D are possible,
as in Section 8.2.3.

Overall, including ISNs widely expands the spectrum of qualitative mathematical behaviors w.r.t. the baseline case where
payoffs only include direct costs of the alternative strategies. In particular, ISNs can mitigate the main perverse consequence
of prevalence-dependence, namely the “elimination impossible” result, by allowing the pure vaccinator equilibrium to
become stable at large levels of social pressure. Other effects are more controversial, as social pressures can induce bistability
phenomena in a large portion of the parameter space, with the well-known amplification of uncertainty due to both the
imprecise measurement of initial state and the equilibrium switch that can be induced by extrinsic stochasticity. Thus,
depending on the context, social norms can either support or hinder vaccination goals. Finally, inclusion of ISNs allows,
under a few further assumptions, an excellent fit of prevalence and coverage data of pertussis in the UK since the seventies,
including the epoch of the pertussis vaccine scare and the subsequent epoch of coverage relapse (see Fig. 24).

8.2.7. Implications of bounded rationality in vaccination decisions

Vaccinating (or not) is a typical example of decision under uncertainty conditions, for which bounded rationality
approaches, such as Kahneman and Tversky prospect theory [470] (see Section 7.3) typically work better than classical
rational calculus. Oraby and Bauch [465] have investigated the dynamic implications of bounded rationality in vaccinating
behavior by an SIR model in which vaccination decisions are formulated according to the ideas of prospect theory. The chosen
coupled behavior-disease model is formulated as an IGD, i.e. parents still learn about other’s strategies through imitation,
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Fig. 23. Bistability of equilibria in the model with imitation dynamics and ISNs: regions of the (§, m) parameters plane for the stability of the equilibria
B (disease-free full vaccinator equilibrium), C (endemic pre-vaccination equilibrium), and D (partial vaccinator endemic state). Equilibrium B is stable in
the hatched region below the thick black diagonal line, C is stable in the light gray region, D is stable in the dark gray region on the left. Details on other
behavioral parameters and basic demographic and epidemiologic parameters are reported in [399].

Source: Reprinted figure from Ref. [399].

also including the effects of ISNs (see the previous subsection) and a non-perfect vaccine. The x-equation for the proportion
of parents choosing strategy V is formulated as

X' = k1X(1 = X)F (yv (1, X)) — F(any (1, X)), (182)

where F(.) is a suitable probability distribution function, and wwyy (I, x) (alt. 7ty (I, X)) is the net reward that a parent playing
strategy N (alt. V) perceives to gain from switching to strategy V (alt. N), given current conditions on prevalence and vaccine
uptake I, x. The map F transforms net rewards to a probability scale, so that the term Ar = F(myn(I, X)) — F(mnw (1, X)),
replacing the sure perceived payoff gain of previous models, represents the probability gain arising from the switch between
strategies. The perceived net rewards vy (I, X), v (I, x) are defined as

v, x) = (V) — in(N) + (Syx — Sy (1 — X)), (183)
any U, x) =y (N) — my (V) + (On (1 — X) — dyX). (184)

In Egs. (183)-(184), besides the social norm components (analogous to those described in the previous section but
taken asymmetric for sake of generality), the true core is represented by the differences Anyjy = 7n(V) — nn(N), and

Amyy = 7y (N) — vy (V), where the quantities oy (V), iy (N), vy (N), 7y (V) represent the expected utilities arising from
each of the four possible prospects faced by agents. In [465] it is hypothesized that agents classify the possible realizations

of infection in a four item scale r;; (i = 1, ..., 4) i.e. (i) mild infection, (ii) moderate, (iii) morbid, up to (iv) death due to
disease/vaccine adverse events (VAE), scaled to the base-case of absence of infection, with corresponding probabilities p(r; ;).
Analogous classification r; y4p (i = 1, ..., 4) is done for VAE. At each realization it is attached a utility evaluation U (r;;) as

well as a weight W (x(r; 1)) to the corresponding probability. The various prospects are defined consequently. For example,
agents currently playing N who continue to play N can only experience the consequences of infection, so their prospect
includes the utility outcomes U (r; ;) with expected utility 7y (N) = >_ U; (i) )W (x(r;)). On the other hand agents currently
playing N who consider to switch to V will include in their prospect both the utility outcomes from VAE, Uyag (i vag), as
well as those due to infection, as a consequence of vaccine imperfection, and so on. The key step then lies in assigning
the utility evaluations and corresponding weights, according to the principles of bounded rationality, i.e. accounting for
the two different possible parents’ attitudes, namely risk averting vs risk seeking, that classically cause departures from
full rationality, depending on a number of parameters reflecting boundedly rational behavior. This is done by appropriate
parametric specifications of U and W [465] including perfect rationality as a sub-case.

The resulting SIR vaccination model based on Eqs. (182) and (183)-(184) is quite richer compared to Section 8.2.6 as it
includes, besides bounded rationality of vaccination decisions, also vaccine imperfection and asymmetric effects of social
pressure. In particular, the underlying perfect rationality model is the extension of the model of previous section accounting
for vaccine imperfection and asymmetric social pressure.

The ensuing equilibrium structure differs from that in 8.2.6 due to the appearance of a sixth endemic state F, which is a
pure vaccinator endemic state forced by vaccine imperfection. In particular (i) the disease free partial vaccinator equilibrium
E remains always unstable, as in 8.2.6, (ii) the pure vaccinator, disease-free equilibrium B is stable for infections that are
not highly transmissible, if the vaccinators social pressure is relatively strong compared to the vaccine cost, while the pure
vaccinator endemic state F is stable if and only if vaccinator pressure is large and the vaccine efficacy is low.
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Fig. 24. Empirical and modeled (a, c, e) pertussis vaccine coverage and (b, d, f) pertussis incidence in the UK, (a, b) from 1971 to 1988 without injunctive
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empirical data and the dashed line is the best-fitting model.

Source: Reprinted figure from Ref. [399].

To sum up, the effects of bounded rationality are mostly dynamical. Indeed, while the dynamics observed in the
underlying rational model are much alike those in Section 8.2.6, with bistability regions having simple forms, the inclusion
of bounded rationality yields a zoo of dramatic dynamical changes, which include complicate nonlinear shapes of the
stability regions, and steady oscillations about the pure vaccinator disease-free equilibrium B. In addition, boundedly rational
behavior makes it harder to eliminate infection, because it can offset the beneficial effects of the social pressure of the
vaccinators group.

8.2.8. Modeling public communication on disease and vaccine risks

A parsimonious explanation of some observed features of vaccination systems can be obtained by removing an unrealistic
feature of models based on IGD, namely that switching between strategies is entirely determined by learning from other
agents (i.e., parents of children to be vaccinated) during social encounters. Indeed, the pure-imitation model poorly
represents the process of information provision in modern countries because, even when a given vaccination is fully
voluntary. Public health systems will nonetheless keep the role of main suppliers of the relevant information on risks
associated to diseases and vaccines, as suggested by a body of evidence [ 110]. In this subsection we report an extension of the
basic imitation-based framework of Sections 8.2.3-8.2.4, which accounts also for perceptions based on information (about
risks) supplied by the public health systems [110]. In this new framework, remindful of Bass classic model for information
diffusion [471], switches between N and V strategies is determined by the balance between private information, exchanged
through inter-personal communication between parents of children eligible for vaccination during their social contacts,
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and public information, communicated by the public health authorities through media and related channels. This allows to
amend the equations for the dynamics of switch between the two strategies as follows

Yy = GOyn — Kunynyv + knvynYv, (185)

/

Vv = —G(Oyn — knvvynYv + Kynynyv, (186)

where G(t) represents the rate of transition from strategy N to strategy V induced by mediatic information (which is
independent of the level of individuals’ social activity), yielding

Yy =GO —yv) + Ky — Kyn)yv (1 —yy), (187)
where Kyy = «0(I) and Kyy = «a(x). In the simplest case one can assume that G(t) is a strictly positive constant,
i.e. G(t) = kg > 0. The underlying idea is that the information provided by public health systems aims to convey a

different perception of risks related to disease and vaccination compared to what might happen in private social encounters.
In particular, a “wise” public communication aims to convince that (i) vaccines are highly safe, with a very low, constant,
risk of VAE, and that (ii) risks associated with the disease are prevalence-independent.

Setting x = yy and simplifying Eq. (187) yields the following dynamic equation for the proportion favorable to strategy V

X =k(1=x) (00 —a)x+y), (188)

where parameter v = G/k summarizes the effectiveness of the public effort (information, education, availability of
vaccination infrastructures, subsides to vaccination staff, etc.) in affecting perceptions on vaccines and disease.

The properties of the ensuing behavior-disease model arising by coupling Eq. (188) with Egs. (166)-(167) depend in a
critical manner on parameter . Briefly, there exist appropriate thresholds . < v such that

e For high levels of public effort (1 > 1) only the pure vaccinator equilibrium B exists and it is globally asymptotically
stable (GAS).

e For intermediate levels of public effort (say ¥, < ¥ < 1) the pure vaccinator equilibrium is unstable, but there is a
disease free partial vaccinator equilibrium E, with vaccine uptake above the elimination threshold, which is GAS.

e For low levels of public effort (¥ < i) the disease free partial vaccinator equilibrium E exists but is unstable, and the
partial vaccinator endemic state D appears ensuring endemicity, though it is not necessarily stable i.e. oscillations may
occur.

In a control perspective, if the infection is endemic at D in a scenario where vaccination is voluntary with public intervention
absent, it is possible to increase the equilibrium coverage by increasing the public effort in providing information about
benefits of vaccination. Suitable further increases in public effort can allow the equilibrium vaccine uptake to expand
until the endemic state D disappears by exchanging its stability with the disease free partial vaccinator E, thus achieving
elimination. Further increases in i can push E to collapse on the pure vaccinator equilibrium B.

These results indicate that public intervention can completely mitigate the negative implications of prevalence-
dependent, pure-imitation models (Sections 8.2.3-8.2.4), particularly removing the impossibility to eliminate the infection.
A simple calibration to Italian data on measles coverage shows that this model explains the recent Italian story, characterized
by a fast increase in measles vaccine uptake following substantial efforts by the public health system, largely better than
models including imitation only [110].

8.3. Behavior-explicit game-theoretic models of vaccinating behavior

The first application of classical game theory and epidemiological modeling to investigate the implications of vaccination
decisions dealt with the conflict between group interest and self-interest in relation to smallpox vaccination upon
reintroduction following a terroristic attack [472]. A companion paper [473] applied the same approach to mass vaccination
against common vaccine-preventable childhood infections under voluntary vaccination. The latter work gave much
momentum to subsequent research in the field. In line with the previous subsections, this subsection reviews this seminal
work and a few subsequent fundamental contributions focusing on childhood vaccination [452,473-475]. The flavor of the
presentation is slightly different however, as the focus of these approaches, though framed within SIR models for vaccine-
preventable infections, is more on classic game theoretic questions, namely existence of Nash equilibria for individuals’
vaccine uptake and comparisons with the level which is optimum for the community as a whole, rather than on dynamic
properties.

8.3.1. The baseline equilibrium model

The work in [473] integrates ideas from the endemic SIR model with vaccination at birth (see Section 3.6) into a
game theoretical framework to investigate the interplay between individual vaccination decisions and the population-level
dynamics of infection in a voluntary vaccination scenario. Game theory is the natural framework given that the vaccination
strategy of each specific agent (i.e. parents), whose sum defines the vaccine coverage at the population level, is influenced by
other parents’ decisions in the sense that the corresponding payoff will depend on the strategies played by all other players.
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Fig. 25. The baseline equilibrium model of the vaccination game. Left panel: patterns of the vaccination coverage x* predicted by the CSNE as a function
of the relative risk r = ry /r; of vaccination for different values of the BRN Ry. The dashed horizontal lines drawn at the level of the critical coverage
X, = x*(r = 0) (for the different levels of o) show the impossibility to eliminate the infection in a regime where individuals vaccinate according to
self-interest driven by direct perceived risks. Right panel: impact of a vaccine scare as represented by a large increase of the relative risk of vaccination
from a very low level r® < x. to a new level ’, for different levels of the BRN R,. The graph reports the trend of the payoff gain AE and of the change
AP in vaccine uptake for different levels of r’. For moderate levels of /, namely r’ < x., the impact is moderate but becomes dramatic when r’ exceeds x,
causing the CSNE coverage dropping to zero.

Source: Reprinted figure from Ref. [473].

Letting the individual strategy be represented by the parents’ probability to vaccinate x, authors then seek a convergently
stable Nash equilibrium (CSNE) solution x*, which is expected to be observed in a real population of players.

The key determinants of individual strategies are the perceived relative cost of vaccination r, defined as the ratio between
the perceived risk of VAE (1) and the perceived risk of disease given infection (r;), and the probability 7, of experiencing
infection under a given vaccination coverage x. For the latter it is assumed that parents correctly know the underlying
epidemic model and estimate m, by the corresponding lifetime probability of infection at endemic equilibrium for an
unvaccinated individual, given by

B 1
(1—x)Ry

Note that the scenario of full absence of vaccinators (x = 0) yields mg = x..

The authors show that there is always a unique CSNE solution x*. For high levels of the relative perceived risk of
vaccination, namely for r > 7y, i.e. for r > x., the CNSE corresponds to the situation where no one vaccinates (x* = 0),
i.e. the pure non-vaccinator strategy. On the other hand, if r < 7, i.e.7 < x., the CNSE solution predicts a strictly positive
probability to vaccinate x*. The condition r < my implies

=1 (189)

(1-1rRy < 1. (190)
Under the above constraint, the CSNE is
N 1
X=1-— (191)
(1 — r),ﬂo
which is such that
X"(r) < xc (192)

(unless r = 0). In other words, under voluntary vaccination elimination turns out to be impossible if individual only take
their self-interest into account (Fig. 25, left panel). Moreover, the case where r exceeds the elimination threshold (r > x.),
a fact possibly observable during periods of vaccine scare, the CNSE predicts absence of any vaccinator at all. A key point
stressed in [473] is that when the perceived relative risk switches from an initial level r® < x, to another one r’ greater than
X, then the resulting payoff gain is increasing with r’ and it has no plateau. In other words, the vaccine scare can go unlimited.
In [473] it is also considered the effect of measures induced by the public health systems to counteract the vaccine scare,
i.e. areduction of the relative risk from a value in excess of x, down to another value below x.. The authors obtained that the
incentive to vaccinate diminishes as the vaccine coverage approaches to its Nash equilibrium. Summarizing, a vaccine scare
easily induces a substantial drop in vaccination, whereas restoring the pre-scare coverage levels is difficult. These findings
are illustrated in the right panel of Fig. 25.

8.3.2. Best individual vs community vaccination response in a heterogeneous population

In [452] a general game-theoretical approach was adopted, aimed to relate the population vaccine demand to individual
decisions in a behaviorally heterogeneous population sharing a common information ‘signal’ about the dynamic spread
of an SIR-type infection. In their model the individuals choose between strategy V (vaccinate their children) and N (not
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to vaccinate) based on perceived benefits and costs of vaccinating, in turn based on the information signal o carrying
information about risks of acquiring the infection. This information signal has the same meaning (and form) of the
information index M in the phenomenological models of Section 8.1. The population is assumed to be behaviorally
heterogeneous, and its internal structure is described by a single real variable y. Individuals having type y choose strategy V
(to vaccinate) with probability x (v, o) and strategy N with probability 1 — x (y, o). Benefits of vaccination are summarized
by the utility function of strategy V which depends on o and y: Uy (y, o), and is increasing in o. On the other hand, the utility
of vaccine refusal (strategy N) is assumed to also depend on the population average vaccine uptake

X = /x(y, o)dy, (193)
y

i.e. Uy(y, 0, x), where Uy is decreasing in x, mirroring a free-riding effect (compare this assumption with Sec-
tions 8.2.4-8.2.8 where the perceived cost of vaccination was increasing in the average vaccine uptake).
By taking the individual’s expected utility

Uy,o,x)=x@,0)Uv(y,0) + (1= x¥,0)UnW, 0, X), (194)
one notes that the resulting individual’s optimal strategy will necessarily depend on the strategies adopted by other
individuals in the population i.e., the above problem defines a game.

The search for the best response strategy x* for the previous problem has to be framed into the theory of set-valued
maps [476], yielding

0 ifUy(y,0) < Un(y, 0, X),
X*(yiav )_(): {1 ifUV(y?a) >UN(yvo'5)_()f (195)
[0,1] ifUy(y,0) =Un(y, o, X).

In order to completely characterize the Nash equilibrium, it is needed to fulfill a self-consistency condition concerning the
average vaccine uptake at equilibrium:

X* € /x*(y,o,x'*)dy, (196)
ie.

/infx*(y, o, x)dy < x* < fsup X (v, o, x*)dy. (197)
This condition ensures that there exists a Nash equilibrium and that the population’s average response is the same for all
Nash equilibria.

On the other hand, at the population level, a benevolent social planner will seek the optimal community strategy by
maximizing the community utility

Ux () = / Uy.0. 0x@,0)Uny.0) + (1 = x¥:0)Uv (.0, x))dy. (198)

By elementary functional analysis it is easy to verify that the above individual-wise optimum x* and the community-wise
optimum x ¢ are such that for all y and given o

X0, 0) < X, 0). (199)
In other words, the Nash equilibrium for individuals will always be characterized by “less vaccination” than the corre-
sponding community-based equilibrium, unless the Nash equilibrium is universal vaccination, confirming in a very general
manner a long-standing result of the literature, namely that the pursuit of optimal self-interest leads to vaccine uptakes that
are systematically lower than those that are optimal at community level.

Note that both the optimal x* and its average value x* depend implicitly on the information signal o, which is a
function of the state variables. For example in [452] it is assumed that ¢ is an increasing and saturating function of infection
prevalence I: o (t) = BI/(u + BI). Note also that x* results to be an increasing function of prevalence if the signal o has
this property.

The implications of the above described approach for infection transmission and control are then investigated by setting
the resulting vaccination strategies within the framework of an SIR model with vaccination. Three main cases are considered:
(a) the vaccine coverage x is equal to the average Nash equilibrium response x(t) = x*(I); (b) the vaccine coverage
adapts dynamically to the differences between its departures from the average Nash response, according to the equation
X(t) = a(x*(I) — x); (c) the vaccine coverage adapts dynamically according to an IGD where the switch rate from N to
V strategy is determined by the payoff gain of vaccination (which, as it can be easily seen, is constant) and the inverse
switch is determined by the perceived vaccine cost (which depends on o (I)). Unsurprisingly, model (a) (compare with
the phenomenological model in Section 8.1) leads to a unique locally stable endemic equilibrium with partial vaccination.
Similarly in model (b), where x ‘follows’ x* with an exponential delay, the endemic equilibrium can be unstabilized by
varying «, yielding sustained oscillations. This confirms the already stated fact that phenomenological and game-theoretic
coupled behavior-infection models are often indistinguishable when the game-theoretic solution is simply set, heuristically,
within the framework of a dynamic epidemiological model.
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8.3.3. Markov decision processes show that the interaction between vaccine-believers and vaccine-skeptics yields sub-optimal
measles vaccine uptake

Within game-theoretic approaches several efforts [474,475,477] have been devoted to the investigation of the population
level implications, of individual choices determined within the framework of Markov decision processes theory (MDPT). An
attempt of systematization of the subject in reference to vaccination games was developed in [474]. The framework rests
on three interacting building blocks, namely a model for individual decisions, a model for changes at the individual scale
(4-scale), and a mean-field epidemiological model for describing the dynamics at the population scale (#-scale). Individuals
handle uncertainty by maximizing their (inter-temporal) expected utility, on the assumption that they are able to predict
- in probabilistic terms - their future evolution in terms of both their future states ¥ (t) and the ensuing utility flow, that
follow from taking a given strategy (i.e., vaccinating a child at a certain age, or not vaccinating him), or action, A(t). Path
Y (t) is a stochastic process which depends on the adopted strategy as well as on the strategies that have been adopted
by other individuals, that is the average strategy at the population level. For example, for those not vaccinating the future
utility path depends on the risk of catching infection which under homogeneous mixing depends on the overall coverage
prevailing in the population. The $#-scale dynamics of infection is specified by an appropriate mean-field model, e.g. an SIR
model, where the actual coverage is determined by the average of individuals’ strategies. Finally, the {-scale dynamics is
specified by taking a suitable continuous-time Markov chain embedded in the $#-scale model. In [475] this framework was
applied to investigate the consequences of a typical phenomenon in current vaccination systems, namely the coexistence
of well-identified and stable groups valuing differently the costs arising from infection and vaccination.

The simplest scenario, introduced in the static game-theory framework in [478], is represented by the conflict between
two groups, namely vaccine skeptics (group 1) and believers (group 2), with different asymmetric perceived costs of infection
and VAE: Cy 1 > Cyv2,C 1 < G letgy (n = 1,2,q1 4+ g2 = 1) denote the relative size of each group (assumed to be
constant), ¢, the vaccination strategy adopted by individuals in group n and ¢, the average coverage prevailing in group
n. The $-scale model is represented by the following simple two groups’ SIRV model with a class vaccinated at birth by a
perfect vaccine, in a constant population, where the two groups differ only in the average coverage:

Sy = (1 = ¢)qn — BSa(l1 +12), (200)
I = BSalli + 1) — (v + )y, (201)
Vy = Wnln — 1Va, (202)

where S,, I, V,, respectively represent the susceptible, infective, removed and vaccinated proportions in each group, with
the removed compartment obeying R, = ¢, — (S; + I, + V,,). The rates determining the various state transitions in
Eqgs. (200)—(202) determine the associated Markov chain for state transition at the f-scale, under the further assumption
that agents estimate the FOI faced by their children by its endemic equilibrium value A = A, = (I + I,..), which agents
know from the knowledge of the $-scale model. It holds A = u(Ry — 1) where Ry = Ro(1 — ¢,q1 — ¢,qy) is the
vaccine reproduction number (Section 3.6), meaning that individuals correctly perceive the long-term risk as a function of
the overall coverage prevailing in the community. The corresponding system for the individual’s state probabilities has the
form Y, = @, Y, driven by the 4 x 4 transition matrix @,:

—(A+p O 0 0

Q. — 0 A o—y+w 0
n= 0 0 - 0
0 0 0 —u

with initial probability distribution, actually representing the probabilities that the generic individual occupies at the
moment of birth any of the four possible epidemiological states, given by the vector %,(0) = [1 — ¢,, 0, ¢,, 0]. Note
that the transition matrix is the same for both groups, since perceptions about epidemiological and demographic hazards
are assumed to be the same, so that difference in {-scale dynamics is only due to the decision to vaccinate or not made at
birth. Given the adopted individual strategy ¢, and the ensuing {-scale path Y,(t), individuals belonging to group n have a
(discounted) utility flow

U, = F,X,(0) + / e "fT %, (t)dt, (203)
0

where vector f, = [0, 0, —Cy ,, 0]7, (n = 1, 2) includes the costs associated with occupancy of various states at any time,
while F, = [0, —C; 5, 0, 0]" includes the costs associated with transitions occurring at age 0, which occur only in the event
of vaccination. Integrating Eq. (203) yields U, = (FnT + fnT (rI — Q,))X,(0), which expands as

Up = _d)nCV,n - (1 - ¢n)cl,n(r +u+ 7/)7] (204)

r+p+a
The mathematical analysis shows that the Nash strategy, i.e. the best response curve 5,1 arising from the maximization of
expected utility of Eq. (204), has the following form: (i) not to vaccinate (¢, = 0) for levels of the perceived (equilibrium)
FOI A strictly below a group-specific threshold A+ ,, (ii) to always vaccinate (¢, = 1) for values of A strictly above A p,
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Source: Reprinted figure from Ref. [475]. With permission from Elsevier.

and (iii) to choose some (unspecified) intermediate level an, 0 < 5,1 < 1for A = Ag . The threshold A , depends on the
group’s perceived costs

Cran(r+p+y)r+wp
Cn—Cun+p+y)’
and it is obviously larger for skeptics.

Previous results allow a range of possibilities (ranging from both groups not vaccinating to partial coverage to both
groups vaccinating) yielding a number of substantive implications. In particular, the community vaccine uptake determined
by the Nash strategy, which is always lower than the community uptake based on the maximization of the (expected)
average population utility (see also previous subsection), exhibits a sharp negative relationship with the proportion of
vaccine skeptics in the population. Under a measles-like parametrization Nash strategies therefore imply that even moderate
proportions of vaccine skeptics can bring the overall coverage sharply below the critical level. Moreover, the Nash vaccine
uptake among vaccine skeptics shows a dramatic responsiveness to the relative cost of vaccination Cy ;/C; i.e. while
for low relative vaccination cost the coverage among vaccine skeptics can be high, there is a level of vaccination cost in
correspondence of which coverage abruptly falls to zero, as illustrated in Fig. 26.

)L'T,n =

8.4. Other contributions to mean-field coupled disease-behavior models

In the previous subsections an attempt was made to present some key modeling approaches, and related dynamic im-
plications, from the recent literature on mean-field coupled behavior-disease models. No-doubt, deterministic mean-field
models represented the vast majority of contributions in the first epoch of the behavioral epidemiology of infectious dis-
eases. Nonetheless, in order to keep the presentation adequately self-contained we restricted the choice of the materials,
focusing on SIR-like models for vaccine preventable infections, such as measles and pertussis. This was partly motivated
by the fact that many seminal ideas arose from the conflict between public and self-interest in relation to common child-
hood vaccinations. Nonetheless it is to be acknowledged that this choice has left-out several excellent contributions to the
field. We therefore devote this sub-section to depict some of the historical profile of behavioral epidemiology in order to
recall the other many areas and contributions to coupled mean-field models for disease and vaccinating behavior. After
the seminal work by Capasso and Serio [406] and a few other phenomenological models mainly focusing on the effects of
including nonlinear forces of infection in basic deterministic epidemiological model, behavioral epidemiology developed
in the 1980-1990s along two main veins. The first one focused on the already mentioned conflict between public and self-
interest in relation to common childhood vaccinations, and the free-rider problem [416,453,479,480]. These works prepared
the humus for the outbreak of contributions presented in this subsection. The second vein yielded to the literature on behav-
ioral change triggered by the HIV/AIDS threat since the 1980s. As noted in [80] “the combination of a long incubation period,
with difficult and costly treatment, and the lack of a vaccine, have made instilling preventive behavior through the dissemi-
nation of information on risky behavior with respect to sexual or intra-venous drug use the main control strategy, especially
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in poor resource settings”. In this situation, where reliable data on individuals’ responses to the spread of epidemics were
mostly missing, mathematical modeling played a pioneering role in the understanding of the effects of behavior change
on HIV dynamics, including the effect of prevalence-dependent switching to lower risk groups, reducing contact rates after
screening or treatment, prevalence-dependent sexual mixing patterns, including the warning that availability of effective
therapies and protective vaccine might increases disease severity by raising at-risk behavior [111,481-486]. Though most
among the cited papers, which were pioneers in an endless list, considered phenomenological models, there have been also
instances of more structured approaches to behavior, such as [487,488]. This literature on behavior change in response to
the HIV epidemics threat posed, among other things, the bricks for the current vast literature on behavioral responses to
pandemics threat.

In particular, sticking on mean-field models of vaccinating behavior, the current phase has seen an explosion of contri-
butions. A number of papers have applied the Markov decision process theory (DMPT) machinery presented in Section 8.3.3
to formulate game-theoretic models of vaccinating behavior in relation to both seasonal [402,403] and pandemic influenza
vaccination [489]. Mean-field analyses were carried out for models investigating adaptive influenza vaccination decisions
throughout several influenza seasons based on the inductive vaccination game [490,491]. Still, DMPT models for childhood
immunization were considered for rubella [492] and varicella [492]. Mean field epidemiological models with vaccination
choices derived from classical utility-based economic approaches were used in [493] to demonstrate the conflict between
individual and social optimum, and the nature of externalities arising from vaccination. Deeper utility maximization frame-
works were used to investigate a number of discrete-time coupled disease-behavior models considering both risky behav-
ior and vaccination decisions in [494,495]. In particular [494,495] revisited Francis’ work [480], showing that (a) the free
market solution always yields inefficiently low levels of vaccine uptake, and that (b) higher coverage can only result from
frictions such as vaccine imperfection, agents heterogeneity, and in general from strategic interactions. In [496] the impli-
cations of vaccination choices were investigated combining a game-theoretic approach with the framework of projected
dynamical systems. A coupled behavior-disease model within a public choice economic framework was used in [497] to
investigate the effects of the different types of externalities introduced by interventions against infections. An SIR model
with bounded-rational vaccination decisions alternative to the model by Oraby and Bauch [465] presented in Section 8.2.7
has been developed and analyzed in [498]. This massive work has prepared the ground for the next step, i.e. moving toward
more complicated and possibly more realistic, network models, as reported in the next sections.

9. Behavior-vaccination dynamics in structured, networked populations

In Sections 6-8, we have reviewed the progress made in the realm of behavioral vaccination, which is directly linked to
public health measures aimed at eradicating vaccine-preventable infectious diseases. However, the majority of such research
relies on the assumption of a homogeneous mixing population, where individuals interact randomly with one another, and
thus a susceptible agent is equally likely to acquire the infection from any infected agent in the population. Despite this
simplification, as reviewed above, research along these lines has provided important insights into the spreading properties
of highly transmissible diseases, and has outlined effective ways for their containment. Nevertheless, the effectiveness and
the predictive value of the theory relying on the assumption of a homogeneous mixing population falls sharply for close
contact epidemics, which, for example, are brought about by sexually transmitted diseases [6,499-501] or the smallpox
[414,502,503]. To resolve this weakness, the assumption of a homogeneous mixing population needs to be replaced by an
actual social network that describes the contacts among all involved. In this framework, the nodes of a network represent
individuals, while the edges connecting them represent contacts that enable the disease to be transmitted. Actually, in
Sections 4-5, we have summarized the recent development of infectious diseases and vaccination on networks, where
the dimension of individual behavior is neglected. Here, from a new viewpoint, we will systematically survey how social
contact patterns influence the interplay between individual vaccination behavior and disease dynamics, i.e., we will review
behavior-vaccination dynamics in structured, networked populations.

9.1. Behavior-vaccination dynamics on static networks

Here we review research concerning behavior-vaccination dynamics on classical static networks, including lattices,
small-world networks (SW) [173,504], Erd6s-Rényi random graphs (ER) [505], and Barabasi-Albert scale-free networks (BA
or SF) [506]. Under different microscopic rules, like payoff-driven imitation or opinion-associated dynamics, the vaccination
decisions of individuals become dependent on the strategies (i.e., to vaccinate or not) of their neighbors, the perceived risk
of infection in their neighborhood, the perceived safety and efficiency of the vaccine, as well as on the financial costs that
are associated with vaccination and disease infection. This gives rise to collective phenomena that are akin to the universal
behavior of particles near phase transitions points in classical models of statistical physics, and this in turn has far reaching
implications for the successful mitigation of epidemic spreading.

9.1.1. Impact of imitation dynamics: The universal “double-edged sword” effect
Like the public goods dilemma [507-509], voluntary vaccination is often regarded as a problem of the commons [415].
In particular, if sufficiently few people vaccinate, the “tragedy of the commons” is likely [510]. As the vaccination level
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Fig. 27. (a) Schematic illustration of the voluntary vaccination dilemma game, which is further divided into two stages. The first stage is the public
vaccination campaign, where vaccinated agents (blue) bear the vaccination cost Cy in return for perfect immunity. During the second stage, the epidemic
strain breaks out, and each unvaccinated individual faces the risk of infection. Infected agents (yellow) bear the cost of infection C;. Unvaccinated individuals
who remain healthy are free-riding on the vaccination efforts of others, and they are indirectly protected through “herd immunity”. (b) The payoffs for
different strategies (to vaccinate or not) and outcomes (healthy or infected). The fractions of vaccinated (c) and infected (d) agents are shown as a function of
the relative cost of vaccination c for the selection strength «* = 1 (open symbols) and 10 (filled symbols), as obtained on a square lattice. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Source: Reprinted figure from Ref. [432].

increases and herd immunity is achieved, individual often forget the risk of some infectious disease and they lost the
memory of their outbreaks. Increasingly often there is no memory at all of outbreaks of some infectious diseases. As a
consequence, many decide to no longer vaccinate, and thus to effectively free-ride on the efforts of others who still vaccinate
their offspring. With such behavior on the uprise, the herd immunity gets lost and the outbreak probability increases
significantly. To mathematically describe such a dilemma, Fu et al. have recently integrated the vaccination dynamics and
epidemiological modeling into an agent-based evolutionary vaccination game, where vaccination and non-vaccination are
mapped to strategies [432]. More precisely, the vaccination dilemma is modeled as a two-stage game (see Fig. 27(a) for a
schematic illustration), with the first stage corresponding to a vaccination campaign, and the second stage corresponding to
an outbreak of the virus. During the first stage, each vaccinated person acquires perfect immunity at a cost Cy, which covers
the actual cost of the vaccine, the perceived risk, adverse long-term health impact (if any), and other intangibles. During
the second stage, each infected individual bears the cost C;, which covers all expenses related to the infection, including the
cost of medication, missed work days, and so on. There are also those lucky individuals who remain uninfected during stage
two despite being unvaccinated (marked by red circles in Fig. 27(a)). These free-riders avoid all the costs and are thus better
off as everybody else, benefiting of course from herd immunity. For simplicity but without loss of generality, to reduce the
dimensionality of the parameter space, the aforementioned costs can be re-scaled by defining the relative cost of vaccination
asc = Cy /G (0 < ¢ < 1since Cy < (). The payoff function of an individual i thus becomes

—c, vaccinated;
IT; = {—1, infected; (205)
0, free-riding.

It is worth pointing out that the payoff IT; is negative, simply because agents need to bear the cost rather than to enjoy a
profit. Actually the most profitable outcome is a net zero payoff.

Once the epidemic ends, individuals update their strategies for the next season based on their payoffs. To accommodate
imperfect information, errors in judgment, and irrational decision making in humans [511], the Fermi function

1
1+ exp[—«(IT; — IT)]’

Wiy = f(IT; - ITy) = (206)
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can be used to determine whether an individual i adopts the strategy of one randomly selected neighbor j or not. Here IT; and
IT; are their payoffs, while «* (0 < «* < o0o) denotes the strength of selection [423,512,513] (note that «° is different from
the imitation coefficient « for well-mixed population in Section 8). Small «* values correspond to weak selection, which
means that individuals are less sensitive to the payoff difference. Conversely, large «* values correspond to strong selection,
which means that the level of uncertainty during the strategy adoption process is small.

An important result is that, in comparison to the homogeneous mixing case [435,463], networks act as a “double-edged
sword”. On the one hand, networks promote vaccination if the cost of vaccinating is low, but on the other hand, beyond
a certain threshold value of the cost, they act as strong suppressors of vaccination. Also, the more heterogeneous the
interaction network, the more pronounced this effect. Interestingly, a similar paradox exists also for different selection
strengths, as shown in Fig. 27(b) and (c). In particular, weak selection guarantees a larger low-cost threshold c;, below
which the epidemic is completely eradicated. As the selection strength increases, the number of free-riders starts going up,
which in turn breaks apart the clusters of those who vaccinate. However, when the vaccination cost is sufficient large, the
high-cost threshold cy, above which nobody vaccinates, rises with an increasing selection strength. This means that the
coexistence phase with vaccinators and non-vaccinators simultaneously present in the population widens with larger «*
values. Due to the special role of hubs, these phenomena become the more pronounced the more heterogeneous a network
is. In the light of this research, this behavior corresponds to a scenario where voluntary vaccination provided herd immunity
for some time but then it fails [491,514].

Similarly to other binary-option games [423,490], the above-reviewed vaccination dilemma game can also be studied
with the mean-field approximation approach [397,515,516], as follows. On an uncorrelated and fully connected graph, we
define x as the fraction of vaccinated individuals and r(x) as the probability that a susceptible individual gets infected in
the population (in general, the whole population is initially divided into two classes: vaccinated agents with fraction x, and
susceptible subjectives with fraction 1 — x. r (x) depending on x is equivalent to being a fraction of susceptible people). Each
individual can take the states and payoffs: vaccinated (V, [Ty, = —c), infected (I, [T, = —1), non-vaccinated and healthy (or
free-riding) (H, ITy = 0) (i.e., Eq. (205)). It is then possible to derive how the fraction of vaccinated individuals x changes
over time. Namely, when an individual with state V turns to compartment H or I, x drops as

X =x(1=0{[(1 = r(xNIWy_n + )Wy}, (207)

where 1 — x is the fraction of neighbors holding the opposite strategy, Wy _.; (Wy_,;) is the probability that individuals from
the compartment V change to the compartment H (I). Accordingly, x rises as

X" =x(1=){[(1 = r@x)Wy_v + rWi_y}. (208)

Taken together, the time evolution of x is

d
Xt —x
dt
=x(1=0{[(1 = 1)) IWh_y + 1CWiy} — x(1 = ){[(1 — rx)IWy_p + 1) Wy} (209)
If the strategy transition probability is determined by Eq. (206), the above equation becomes
dx K* K®
@ = x(1—x){[(1 —r(x))]tanh 5(17\/ — ITy) | + r(x)tanh ?(HV —IT))

x(1—x) {[(1 — r(x))]tanh [K;(—c)] + r(x)tanh |:K;(1 — c):” . (210)

Assuming the right-hand side of this equation equal to zero, we can get the equilibrium vaccination level. Then, the
equilibrium fraction of infected individuals, i.e., the size of the epidemic, is expected to be fi = r(x), satisfying the self-
consistent equation f; = (1 —x)(1 —e®efi), where R, is the basic reproductive number of the epidemic (it is usually related
with degree variation or degree distribution of networks [290], but here equal to the case of homogeneous mixing population
owing to full-connections in network population).

In a social dilemma game, whether or not to switch the vaccination strategy depends not only on the personal success of
each individual, but also on the success of others [517,518]. Using this as motivation, one recent work extended the decision-
making process on the basis of personal imitation and social influence (or peer pressure) [515]. The pairwise comparison
rule for the strategy-updating becomes

1

Wi—>j =f(17] — H]) = (kO/ki)a 1 + eXp[—KS(Hj — H,)] ’

(211)

where k, is the number of neighbors possessing the opposite strategy of individual i, k; is the number of all neighbors
of i (i.e., the degree of i), and « determines the so-called peer pressure. Here « = 0 recovers the setup used in [432],
while positive o values make individuals more prone to sticking with the strategy that is representative for their neighbors.
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Source: Reprinted figure with permission from Ref. [515].

Accordingly, the mean-field equations for the vaccination level (i.e., Eq. (209)) become

dx
dt

+

= (1=0)x""{[(1 = r@)IWhoy + rOWiLy} —x(1 — )" {[(1 — r&x)IWy_py + 1) Wy} (212)

Interestingly, compared with the classical version of the model [432], the “double-edged sword” effect occurs again.
Peer pressure (i.e., « > 0) promotes vaccination coverage as its cost is small, but plummets when costs exceed a critical
value, irrespective of the structure of the interaction network. The larger the value of «, the narrower the range of the
coexistence phase for vaccination and non-vaccination. These findings can be quantitatively validated also by the mean-
field approximation, as shown in Fig. 28. If the vaccination is costly, peer pressure promotes the advantage of vaccinators,
and thus forces their neighbors into following. This gives rise to larger clusters of vaccinators, which become unable to
effectively prevent the spreading of the disease across the network. Only as the cost of vaccination decreases sufficiently is
this cluster formation impaired, and then randomly distributed vaccinators are able to cover wider parts of the network to
provide effective protection for their peers.

Along similar lines, the generality of the “double-edged sword” effect was further confirmed with a revised imitation
dynamics. Recently, Zhang et al. considered a more rational decision-making model from two aspects [519]. In the first
place, the vaccination behavior of individuals was endowed with memory for their past experiences. The payoff function in
Eq. (206) was thus reformulated as

() = Ii(t) + wili(t = 1), t>1, (213)

where w (0 < w < 1) is the memory weight. Secondly, a perceived risk threshold p was introduced to avoid the blind
imitation of individuals. That is, only when the infection risk surpasses this threshold, the willingness to vaccinate increases.
Despite of these differences in the model, the results have shown that, as the cost of the vaccine is small, the coverage of
the vaccination increases with increasing w and p, leading to lower onsets of an epidemic. If the vaccination is costly, the
results also remain qualitatively unchanged, and the main observations are attributed to the formation and decomposition
of vaccination clusters, as described in [515].

When modeling voluntary vaccination programs, we can choose different decision-making rules that govern the
microscopic dynamics, and these different rules also frequently lead to different outcomes on the global scale. Social learning
or imitation, as reviewed in this subsection, is a popular and realistic rule, which however is conducive to the emergence
of clusters in structured populations. In vaccination dilemmas, this ultimately leads to a persistent “double-edged sword”
effect, where below a certain cost vaccination is effective, while above this threshold it becomes ineffective. In what follows,
we will review results obtained also with other decision-making rules at the microscopic level, and outline differences
among them at larger scales.

9.1.2. Impact of interaction network topology

In network epidemiology research, it is thoroughly established that the structure of the interaction network plays an
important role in the spread of infectious disease [ 171,202,214,222,229,230,337,520-523]. For example, epidemic spreading
on scale-free networks is difficult to control, and with the lack of an outbreak threshold, the disease can propagate even with
a low infection rate [521]. However, this holds if vaccination is absent. If an effective vaccination program is incorporated
into the disease dynamics the outcome can be different. To account for this, a new modeling framework for evolutionary
vaccination decision-making was proposed [524], where individuals resolved the vaccination dilemma in terms of the trade-
offs between the infection risk, the side effects, and the cost of vaccination. More precisely, if a susceptible individual has
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kirs infected neighbors, the total infection probability will be

M=1— (1= gk, (214)

where §; is the infection rate for a single contact between a susceptible and an infected individual.
Similarly, the total perceived infection probability is

)‘perc =1-(1- ﬁperc)ki”fy (215)

where if there is full knowledge for the infection risk Bperc = B; and Aperc = A
If the susceptible agent does not choose to vaccinate, it bears the perceived cost

Py = CiAperc, OF Py =CiAp. (216)
Conversely, missing out on vaccination yields
Py = c3, (217)

where c; and c; are related to the risk of infection, to potential side effects, and to the cost of vaccination.

Unlike with imitation considered in the previous subsection (see Eq. (206)), here individuals adjust their strategies in
agreement with another kind of decision-making rule that governs the microscopic dynamics, namely according to their
self-interest or cost minimization. Thus, individuals try either to minimize their cost or to maximize their benefits (i.e. self-
interest rule). The strategy s; of individual i will thus be

_ __Jvaccination, ifPy — Py < 0;
si=f(Pv = Py) = {non—vaccination, otherwise. (218)

Contrary to the result that the outbreak of disease on SF networks is more likely than on ER random graphs [229,520,521],
in the realm of the model above it turns out that, if individuals are inclined to vaccinate at the initial stage of an outbreak,
the epidemic is better constrained on the SF network (see Fig. 29). Namely, on SF networks, the majority of middle- and
large-degree nodes have a higher tendency to vaccinate. To verify this fact, the authors in [524] provide a mathematical
proof for the threshold degree of vaccination. Taking into account the vaccination condition given by Eq. (218), one obtains
the threshold

K G G1—QC
Ph>Py= cih>c= 1—(1-=8)n > = = king > IOglfﬂlci + 1. (219)
1 1

Using B; = 0.2,¢c; = 1andc; = 0.7 as an example, we have kj; > 6. For network of (k) = 6, the vaccinated
candidates are very limited on ER graphs, but more nodes prefer to vaccinate to reduce the loss because of the existence
of middle- and large-degree nodes in SF networks. The vaccination program on SF networks, in some sense, is like the
targeted vaccination in the mandatory model [274,277], yet shows an adaptive character as well. In addition to permanently
effective vaccination, temporarily effective vaccination (taking into account that the vaccine for some disease like influenza
and hepatitis B will lose its efficiency after a given period of time) has also been considered. Though in this case there
exist vaccination oscillations, the spread of disease ultimately can be controlled on complex networks. This further confirms
that the larger inclination for hub nodes to get vaccinated plays an important role and can critically affect the success of
vaccination campaigns, which ought to be considered in the design of incentives for vaccination.

Despite of the inspiring progress, there does not exist a direct comparison between a perfect and an imperfect vaccine
in [524]. Aiming to clarify this, Cardillo et al. introduced a tunable parameter r to modulate the quality of the vaccine in
influenza-type disease, the vaccine being perfect at T = 0 and useless at T = 1 [525]. When the vaccine is perfect, the
research revealed that SF networks outperform ER graphs, since the overall vaccinated (infected) number is larger (smaller)
on SF networks. This result is in agreement with the general conclusions reported in [524]. However, if the vaccine is



Z. Wang et al. / Physics Reports 664 (2016) 1-113 71

imperfect, a crossover effect occurs such that the ER graphs are more effective than SF networks in enhancing vaccination.
In [525], these results are mainly attributed to the competition of two processes taking place. One is the propagation of the
diseases, and second is the uptake of vaccination behavior. If the vaccine works perfectly, or even if the vaccine is imperfect
but the infection rate is small, the vaccination behavior spreads faster on SF networks than on ER graphs (i.e., the vaccination
onset starts earlier on SF networks), as the natural epidemic threshold is smaller on SF networks [229,520,521]. However,
if the vaccine is imperfect and the infection rate is large, the outcome of the competition between disease and vaccination
spreading reverses. Namely, under such conditions, the smaller benefits provided by the imperfect vaccine cause agents to
forgo vaccination, which naturally promotes the propagation of the disease.

Taken together, these findings significantly enrich our understanding of behavior-vaccination dynamics on static,
complex networks, and can relevantly inform on optimal vaccination strategies.

9.1.3. External incentive programs

The role of subsidy policy: a paradox. Except for internal mechanisms, external incentive programs also play a vital role in the
design of behavioral vaccination [526,527]. For example, historically, subsidy policy showed its particular effectiveness in
terms of controlling epidemic spreading, which is of significance from the socioeconomic perspective [528-532]. However,
how different subsidy policies might work in structured populations is still an open issue. Motivated by this, Zhang et al.
recently considered two categories of subsidy policies and explored their influence on different networks, and how they
affect vaccination decisions and disease dynamics [533]. The first class is the so-called free subsidy policy, where the total
amount of subsidy A is distributed to a certain fraction of individuals, who take vaccination without any personal cost. The
(net) payoff function (i.e. Eq. (205)) thus becomes

0, subsidized-vaccinating;
—c, vaccinated;
I = —1, infected:; (220)

0, free-riding

where the number (fraction) of subsidized vaccinators or freely vaccinated individuals is Ny = A/c (p = Nsy/N, where
N is the size of the network). In this case, it is worth noting that, since the number of freely vaccinated individuals keeps
constant in each vaccination stage, the selection process of them does not need to be repeated. If one individual is initially
chosen as the recipient (to receive the vaccine for free), it will remain a recipient forever. The second class is partial-offset
subsidy policy, where each vaccinated individual is offset by a certain amount &, resulting in the actual vaccination cost
c(1 — &). Correspondingly, the (net) payoff becomes

-1, infected; (221)

(¢ — 1)c, subsidized-vaccinating;
I =
0, free-riding.

Similar to Eq. (209), the mean-field approximation for the fraction of vaccinated individuals x for both the free subsidy policy
and the partial-offset subsidy policy is given as

b _ xt—x
dt
= x(1 =){[(1 —rNIWhoy + 1OWiov} — (x — p)(1 —O){[(1 — r(x) Wy p + )Wy}, (222)
and
b _ xt—x
dt
= x(1 =){[(1 = r))IWh_sy +rCOW,_sv} — x(1 — X){[(1 = r))IWsyp + r(X)Wsy_ 1}, (223)

where SV is the subsidized-vaccinating state and x — p is the fraction of individuals who can change their vaccination
strategies.

Based on the imitation dynamics (i.e. Eq. (206)), it is found that the free subsidy policy in general leads to higher
vaccination coverage than the partial-offset subsidy policy, indicating that the former case is more effective in controlling
epidemic outbreaks. This phenomenon can also be verified by means of the mean-field approximation (i.e., Eqs. (222) and
(223)). In the free subsidy case, the recipients act as role models, and are thus more appealing than the non-subsidized
vaccinators in attracting their neighbors to take vaccination. This is expressed qualitatively in terms of the higher fraction of
imitated vaccinators in the neighborhoods of recipients. Although freely vaccinated recipients (red) are randomly distributed
on networks, it is quite remarkable how they are able to excite their neighbors and motivated them to imitate their behavior
(see Fig. 30). This gives rise to vaccination clusters (green), which naturally results in a more effective control in comparison
to the partial-offset subsidy policy. Snapshots in Fig. 30 provide a compelling visual in favor of this argument.

As can be inferred from 9.1.1, the updating dynamics based on individual behavior choices can directly decide the final
vaccination coverage and the average epidemic size. When studying the impact of subsidies [533], the authors considered
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Fig. 30. Characteristic snapshots of the stationary state configuration for partial-offset (a) and free (b) subsidy policies on the square lattice. Blue, green,
yellow, and red points represent free-riders (not vaccinated and healthy), vaccinators, infected individuals, and freely vaccinated recipients, respectively.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Source: Reprinted figure from Ref. [533].

also another Fermi-like updating rule, but one that does not involve imitation [528]. Such updating is known as myopic [534],
because individuals update their vaccination preference by balancing their own advantages and disadvantages of vaccination
(like the self-interest rule), rather than considering input from their neighbors. In particular, an individual first gets the
perceived costs Py and Py, and then opts for vaccination according to the probability

1

we =f(Py —Py) = . 224
=S (Py —P0) = e (224)
In other words, the strategy s; of individual i is governed as
o __Jvaccination, ifq < 1/{1 + exp[—«*(Py — Py)1};
si=f(Py —Py) = {non—vaccination, otherwise; (225)

where ¢ is a randomly distributed real number in [0, 1].

This myopic updating dynamics leads to completely different results in terms of the effect of different subsidy policies.
Namely, in this case the partial-offset subsidy policy works better than the free subsidy policy. Under the latter, there is
polarization between subsidized vaccinators and general agents, which is very non-beneficial for the emergence of herd
immunity. Owing to the unequal distribution of subsidy, the perceived infection risk of those recipients greatly decreases,
but non-recipients are more prone to taking a risk (i.e., the willingness of vaccination among non-recipients declines) after
balancing the advantages and disadvantages of vaccination. In the partial-offset subsidy case, the cost of vaccination is
evenly reduced for each vaccinated individual due to the endowment of the policy, which provides natural conditions for
the formation of herd immunity. In addition to group-optimal vaccination, the study revealed that a moderate subsidy rate
can generate the maximal socioeconomic benefit under the partial-offset subsidy policy, which is a particular meaningful
message for the public health authorities.

Considering these results, it becomes clear that the optimization [535-538] of the subsidy policy is indeed a difficult
yet very important issue, which can mean the difference between a successful and an unsuccessful vaccination campaign.
For the optimal outcome, it is important to carefully consider the mechanisms of individual decision-making, as well as to
actually test on a representative sample how people respond to different external incentives in realistic situations.

The impact of committed individuals, or zealots. In real life, many people hold rigid viewpoints on certain aspects of reality,
regardless of peer pressure, incentives, and media. Such people are known as committed individuals or, shorter, zealots.
The impact of zealots on various aspects of social dynamics has been studied often before, for example in opinion dynamics
[539-542] or in evolutionary social dilemmas [543]. Of course, zealots are also found with regards to vaccination. Since some
agents are much more sensitive to the infection risk than average, they consistently adopt the vaccinating strategy, i.e., the
committed vaccinators do not engage in the decision-making process [544]. In essence, the setup of committed vaccinators
is the same as the free subsidy policy (the mean-field analysis is the same as put forward with Eq. (222)), needing only one
additional parameter fc to determine their fraction. Owing to the effect of “steadfast role models”, committed vaccinators
stimulate vaccination uptake and can thus contribute significantly to the prevention of infectious diseases. The larger the
value of f¢, the more obvious this effect. As such, committed vaccinators persuade their neighbors to follow their behavior
and form vaccinating clusters, which is, as highlighted often above, the typical effect of imitation [432,515,533].

Of course, zealots can also be committed non-vaccinators. It is thus necessary to look at the down side too, that is,
considering committed vaccinators as good role models, but also considering committed non-vaccinators as bad role models.
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Table 5

The payoffs for different strategies and states. Here ITy, ITs and IT; are the (net) payoffs for
vaccination, self-protection and laissez-faire, respectively. The superscripts H and I denote
healthy and infected states, while w is the probability of a susceptible to become infected.
For more details, please refer to [546].

Strategy & State Fraction Payoffs
Vaccinated & Healthy pv Iy = —c
Self-protected & Healthy Pl =ps[+(1—8)(1—w)] MO =-b
Self-protected & Infected pL=ps(1—8)w ml=-b—1
Laissez-faire & Healthy Pl =(1—py — ps)(1—w) nft=o0
Laissez-faire & Infected ph=(1-py — ps)w n=-1

This has been done in [545], and the results were as follows. On lattices, the presence of committed vaccinators (non-
vaccinators) exerts a positive (negative) effect on the epidemic spreading. Moreover, on SF networks the presence of
committed vaccinators cannot prevent an epidemic for small and intermediate vaccine cost, predominantly because the
hub nodes consistently prefer to reject vaccination. In this respect, the effect of committed individuals depends not only on
their fraction, but also on the network structure and the cost of vaccination.

9.1.4. Multiple-strategy dilemma framework: A counter-intuitive observation

When an infectious diseases threatens, vaccination is often the first and the most common line of defense to protect the
public. However, due to high economic cost, religious beliefs, as well as possible side effect [547-549], people sometimes
prefer alternative, and frequently also cheaper self-protection measures [ 110,406], such as avoiding contact with risk groups
or wearing face masks to at least temporarily mitigate the risks. To take this into account, three different strategies, namely
vaccination, self-protection, and laissez-faire (i.e., neither vaccination nor self-protection), were considered in the realm of
an evolutionary epidemic game [546]. Assuming that the vaccine provides perfect protection at a cost c, self-protection is
effective with probability § at a lower cost b (b < c). Moreover, with probability 1 — § a self-protected individual turns to
laissez-faire. That is, self-protection is an alternative in between traditional vaccination and laissez-faire. Analogous to the
binary-choice vaccination game [432], the payoff of this new framework is portrayed in Table 5, where py, ps and p; are the
factions of vaccinated, self-protected and laissez-faire individuals, respectively. According to the mean-field approximation
framework, the time evolution of the fraction of strategies is governed by the following equations

dpv

- =S P+ (ov S pd) + (pv S pp) + (v S o)), (226)
and

dps

e (05 = pv)+ (o S o)+ (pd = p) + (05 S pv) + (pi S p) + (5 S Y. (227)
where

pa s pg = (pg —> pa) — (oa = pPB)
paps(Wp_.a — Wa_,p)

1 1
- Pa { 1+ expl—*(ITa — Mp)] 1+ expl—«* (IT5 — )] }

K.S
papptanh [?(HA - 173):| . (228)

Here A and B represent the final states, and the expressions for the fractions and payoffs of each state are from Table 5. Since
the preservation condition py + ps + p; = 1 holds, it is straightforward to get the equilibrium fraction of all three strategies
from the above equations.

With this setup, the authors in [546] discovered a counterintuitive phenomenon. Namely, intermediate values of § lead
to a larger epidemic size and a higher collective cost, which is similar to the well-known Braess’s paradox [550,551]. More
precisely, the whole range of ¢ is divided into three regions, as shown in Fig. 31(a). In the left region, owning to the low
efficiency, no one self-protects, which returns the traditional binary selection model [432]. Infected laissez-faire individuals
(dark red) and uninfected laissez-faire individuals (i.e., free-riders, light red) are strictly separated by vaccinators and form
percolating clusters (see Fig. 31(d)). With middle region, for intermediate values of § (i.e., the region between both dash
lines), the payoff advantage of self-protection starts to play a noticeable role, so that vaccination and partial laissez-faire
are subverted. However, this leaves the heard with insufficient protection, ultimately resulting in a larger epidemic and the
fragmentation of percolating free-rider clusters. Another counterintuitive fact is that more self-protected individuals (whose
individual payoff is higher) generate a lower (rather than higher) total payoff of the population. Thus, the collective payoff
and the epidemic size are negatively correlated with the spread of self-protected individuals, as shown in Fig. 31(b) and (c). In
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Fig. 31. (a) The fraction of strategies and the epidemic size R* are shown as a function of the successful rate of self-protection 8. (b) The epidemic size R*
and the total payoff P are shown as a function of §. (c) Correlation between the population payoff P and the epidemic size R*. (d)-(g) Typical snapshots of
the steady state for § = 0.2, 0.35, 0.5 and 0.95, respectively. Gray, light red, dark red, light blue and dark blue denote vaccinated, uninfected laissez-faire,
infected laissez-faire, uninfected self-protective, and infected self-protective individuals, respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Source: Reprinted figure from Ref. [546].

the third region, when § is sufficiently large, self-protection is sufficiently effective. Epidemics decline and vaccination is not
a viable option. Under such circumstances, the percolating cluster of free-riders (light red) recovers due to herd immunity.

The universality of this interesting phenomenon can be further extended to other networks, and it can be qualitatively
validated by means of the mean-field approximation. In heterogeneous networks, due primarily to the hubs, those that
become infected and laissez-faire individuals fare worse still than they do on more homogeneous networks where the
differences in degree are smaller. Similarly counterintuitive phenomena can also be observed with myopic updating (self-
interest rule) [552], although the differences with the more commonly considered imitation rule [432,515,524,533] are
significant. This should be taken into account, specifically when considering competing strategies in vaccination programs.

9.2. Behavior-vaccination dynamics on empirical networks

Different from the network models reviewed above, realistic contact networks usually exhibit assortative and
disassortative mixing patterns [168,175,553] and community structure [554,555], both of which significantly impacts the
coupled dynamics of behavior and vaccination taking place on them. In this subsection we review recent research devoted
to behavior-vaccination dynamics on empirical networks.

9.2.1. How does feedback influence well-known passive and pro-active policies?

The voluntary ring vaccination strategy. In a homogeneous mixing population, it is a well-recognized fact that voluntary
vaccination (without any economic incentives) is difficult or impossible to control, and thus cannot be used effectively to
eradicate vaccine-preventable disease [402,415,447,490,491,529,557-559]. As vaccination coverage levels increase, herd
immunity can provide greater protection. However, soon the low infection risk reduces the enthusiasm of individual
vaccination and leads to the reoccurrence of high disease prevalence. That is to say, voluntary policy generates oscillations in
the uptake of vaccination [435], which is particular true for highly transmissible diseases. However, the history of smallpox
teaches us that complete eradication by means of voluntary vaccination is possible [376,381,560]. Aiming to elucidate this
observation, Perisic et al. have integrated disease dynamics with a voluntary ring vaccination policy in a social network [431].

Based on the perceived risk of infection and benefit of vaccination, they obtained the perceived cost functions of non-
vaccination Py and vaccination Py (see Fig. 32(a) for the transition probability of individual states):

Py=(1- }\perc)a + )\perc[(‘l - dinf)L]»
Py = §[(1 - dvac)L] + (1 - 5‘){(1 - dvuc)[(l - )‘-perc)a + )\perc(l - dinf)L]}a

(229)
(230)
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Source: Reprinted figure from Refs. [431,556].

where a (L) is the payoff for individuals with continued susceptibility (lifelong immunity), ¢ is vaccine efficacy and diys
(dyac) represents the probability of death due to infection (vaccine-related complications). In particular, Py consists of
two terms: the first term denotes the total payoff if vaccine is efficacious; while the second is the total payoff once
vaccine loses efficacy. The decision-making process was in accordance with rational self-interest rule (i.e., Eq. (218)). If
the cost to vaccinate is smaller than the cost not to vaccinate on a given day (i.e.,, Py < Py), individuals would turn to
vaccination. Interestingly, there is a threshold in the neighborhood size, which guaranteed “first-order” phase transition of
vaccination behavior, like the explosive phenomena of collective dynamics in statistical physics [561,562]. From Fig. 32(b),
it is clear that voluntary ring vaccination quickly contains the outbreak until the average neighborhood size is larger
than 57. Due to effective control, the total number of infected and vaccinated agents remains very small below this
threshold. Interestingly, as the neighborhood size increases (while the average force of infection is held constant), the
model recovers the homogeneous mixing scenario [402,415,447,557,558], where each infected agent could influence more
neighbors. As a result, infection breaks through the imperfect rings of vaccinated individuals, percolates through the whole
network and leads to a considerable final epidemic size and numerous vaccinated. To further validate the accuracy of
these theoretical predictions, the authors in [431] also carried out the investigation for smallpox-specific disease history
and vaccine properties, with similar results (see Fig. 32(c)). Their efforts thus illustrate the significant difference between
continuous population and spatial structure population in coupled behavior-vaccination dynamics. On the other hand, it
suggests that the design of voluntary vaccination, as a primary control measure, to eradicate outbreak of some close contact
diseases such as smallpox should rely on the number of social contacts and on the local structure of the population.
Though voluntary vaccination policy enables eradication of the disease in contact-structured networks, the foregoing
model made a couple of simplifying assumptions regarding the natural history of the disease, pre-existing immunity, and
human behavior. To relax some of these simplifications, the authors further investigated the dynamics via weighing infection
risk (i.e., the probability of death due to disease) versus vaccine risk (i.e., the probability of death due to vaccine) [556]. Of
significance, they have shown a counterintuitive phenomenon for the coupled dynamics, which was then divided into three
phases (see Fig. 33). Phase I exhibits a negligible final size of the epidemic and a small number of vaccinated individuals.
In this phase, any node with an infected neighbor would vaccinate immediately, preventing disease transmission. Thus, the
infection risk will be fast, and effectively controlled under a voluntary ring vaccination. Then, in phase II, nobody is likely to
vaccinate due to low disease risk or high vaccine risk (this phase is not shown in Fig. 33(b)). This finally results in a large final
epidemic size. For intermediate epidemic risk and vaccine risk (i.e., phase IIl, the area between two dash lines), though a great
number of agents prefer to vaccinate, the disease still percolates through the whole population due to imperfect protection.
Except for a deterministic decision process, the authors also tested the effect of a probabilistic setup. Accordingly, even if
Py < Py, individuals may still opt to vaccinate with a given probability. If this probability is low, then very few people are
allowed to vaccinate and infection takes over the population (see Fig. 33(c)). As the probability increases, the outbreak is
effectively contained by means of the voluntary ring vaccination. Interestingly, the continuous enhancement of vaccination
probability quickly reduces the essential number of those that need to be vaccinated for better controlling the spread of the
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Source: Reprinted figure from Ref. [556].

disease (namely, there is a vaccination peak). Altogether, the study [556] revealed that the final outcome of rational self-
interest dynamics under a voluntary vaccination policy is closely related with contact patterns, with the perceived vaccine
risk, as well as with the risk of contracting the disease.

The superspreader vaccination strategy. In the context of network vaccination (i.e. Section 5), it has been thoroughly estab-
lished that targeted vaccination toward superspreaders can significantly reduce the spread of disease [274,290,343,370,371].
However, the assumption that superspreaders (who typically have many connections and are responsible for the majority
of secondary infections [563-567]) always accept vaccination does not capture the realistic transmission dynamics with
behavioral response, especially for seasonal influenza-like vaccination. In this regard, Wells et al. analyzed how behavioral
feedback affects the effectiveness of vaccination strategies [434]. In addition to the passive vaccination as the baseline strat-
egy (whose update is governed by a function of payoff difference f (P, — Py)), individuals can also implement one of four
pro-active strategies: (1) random vaccination (RV) targeting a randomly chosen individual; (2) nearest neighbor vaccination
(NN) aiming to a randomly chosen individual and one of their neighbors; (3) chain vaccination (CV) targeting either a ran-
domly chosen individual or a neighbor of an individual targeted the previous day; (4) improved nearest neighbor vaccination
(INN) targeting a randomly chosen individual and one of their most connected neighbors.

Surprisingly, it was revealed that the proposed superspreader vaccination strategies provide little or no improvements,
compared to traditional ad-hoc delivery of vaccination [324,568]. The behavioral feedback facilitates policy resistance,
which nearly completely undermines the effectiveness of superspreader strategies. Actually, superspreader strategies
enhance the vaccination level among superspreaders. However, this effort is offset by the low coverage among non-
superspreaders (representing the majority of nodes in a heterogeneous network), which naturally leads to a low overall level
of success. These observations indicate that selecting connection heterogeneity as an important criterion of implementing
superspreader strategies is not sufficiently accurate. For example, individuals with higher infectiousness or a longer period
of infectiousness may not coincide with highly connected individuals [296,566]. Moreover, to improve the readiness to
vaccinate in the population, an economic incentive to the targeted individual has also been proposed. As expected, the
undermined benefit of pro-vaccination strategies can be somewhat recovered under a substantial economic stimulus. Thus,
the design of vaccination strategies targeting superspreaders must consider the possible policy resistance caused by strong
effects of behavioral feedback, and mitigate it whenever possible.

The mixed vaccination strategy. Up to now, we have acquired a thorough understanding for the interrelationship between
vaccination decision and disease dynamics: via discrete, memoryless strategies, human decision-making can profoundly
influence epidemic incidence as well as vaccination coverage [397,404,415,569]. However, as the cooperation strategy in
evolutionary games [570,57 1], vaccination sometimes can be regarded as one mixed strategy, i.e., choosing vaccination with
a given probability and taking the non-vaccination stance with the remaining probability. It is interesting to consider how
does this setup affect the vaccination program and the spread of disease.

To address this, Cornforth et al. defined the vaccination strategy vy of an individual with degree k as the probability that
it will opt for vaccination [285]. The total perceived payoff of this individual is thus given by

me(vr) = u — ve(Cy + 0k Cr) — (1 — vk, (231)

where u is the baseline payoff corresponding to the value of a healthy life over the course of an epidemic, while Cy (C;)
represents the monetary cost of vaccination (infection). Because the influenza vaccine is only partially effective, some
vaccinated agents remain susceptible to the infection. Here, Cz denotes the cost of infection to a partially resistant (immune)
agent, while oy, (o) is the perceived probability of becoming infected if vaccinated (non-vaccinated). Thus, different from
respective expressions of discrete strategies [432,524,546], the second term in the right hand side of Eq. (231) is the
perceived payoff of vaccination selection, and the third accounts for the perceived payoff of non-vaccinated behavior. It
is also worth mentioning that the estimation of perceived risk depends on the information of past epidemic seasons.
Regardless of the properties of the interaction networks, it was shown in [285] that the likelihood of vaccination increases
with degree (because the infection risk also increases with degree), which is the same with prediction of voluntary ring
vaccination [431]. Nevertheless, the degree threshold for vaccination is closely related with the overall structure of the



Z. Wang et al. / Physics Reports 664 (2016) 1-113 77

1 1
a \ Oroit Points b Prevalence Orbit
: Sleady-State Risk /" Prevalence Steady-State
0.8 ' ; 08
5 [
0.6 . 2 o6
x . K} ‘
0 | . g
o 04 : 3 ® 0.4 1
B [+
02 [\’..—-————— 0.2 /\MW
t/ / W
0 - 1 L L A 0 E 2 1 1 A
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Transmissibility Transmissibility

Fig. 34. The impact of transmissibility on risk (a) and disease prevalence (b) (steady-states and unstable limit cycles) in urban networks. Before the
threshold (indicated by black arrows), there is no epidemic risk and vaccination. With transmissibility increasing, these two first diverge and then end at
the same state again.

Source: Reprinted figure from Ref. [285].

network, and increases with the heterogeneity of the degree distribution (though the perceived fraction of vaccination does
not change monotonically with network heterogeneity). Interestingly, it was also found that vaccination relies critically on
the transmissibility of disease [285]. Results presented in Fig. 34 show how the steady-state risk/prevalence (corresponding
to Nash Equilibria) and unstable limit cycles vary as a function of transmissibility. For small transmissibility, there is
no epidemic risk and thus no vaccination under the threshold (indicated by black arrows). As transmissibility increases,
epidemic risk/incidence is predicted to converge to a stable Nash Equilibrium. However, in reality there are considerable
oscillations from one season to the next. This is caused by the polarization of vaccination behavior: non-vaccination is
always followed by wide-spread disease and consequently high vaccination coverage in the next season. At a high level
of transmissibility, the oscillatory pattern in vaccination behavior goes back to the steady state. These oscillations seem
empirically inconsistent with the relatively stable vaccination pattern of influenza. To elucidate this discrepancy, it is further
unveiled that increasing the number of prior seasons that individuals recall during the decision-making process enables
these oscillations collapsing onto a stable vaccination strategy.

9.2.2. Social clustering of behavior and opinions—assortativity of (non- Jvaccination

Empirical evidences—clusters driven by strategy and opinion updating. When reviewing results presented in 9.1, we have
emphasized that the updating dynamics plays a crucial role in the final size of epidemic and vaccination coverage. Notably,
during the decision-making process, there exist different criteria and factors that affect each particular choice, such as payoff
maximization [524], stochastic imitation [432], and social impact theory [572]. While it is clear that taking into account one
or the other criterion leads to different evolutionary outcomes, few works have focused on the impact of joint action. In this
regard, Mbah et al. incorporated imitation dynamics (i.e., Eq. (206)) and self-interest dynamics (i.e., Eq. (218)) into a coupled
epidemiological model on different contact networks [433]. In particular, individuals could make their vaccination decision
either based on imitation or based on payoff maximization, with probability ® and 1 — ©, respectively.

Surprisingly, in this framework the “double-edge sword” effect appears again. Namely, imitation behavior (i.e., ® = 1)
increases vaccination coverage for relatively low costs of vaccination, yet impedes the incentive to vaccinate at high costs
(see Fig. 35(a)). While in terms of completely eradicating the epidemic, imitation behavior fails and even enlarges the ul-
timate epidemic size, irrespective of vaccination costs (Fig. 35(b)). This unexpected outcome is related to behavioral clus-
ters resulting from imitation dynamics, where vaccinators tend to contact vaccinators, and non-vaccinators tend to contact
non-vaccinators (Fig. 35(c)). Although vaccination levels increase in some regions, clusters of non-vaccinators (susceptible
individuals) exacerbate transmission and elevate the probability of an outbreak. In this regard, imitation behavior may shed
new light into the high incidence of measles in many countries with high vaccine uptake [242,573-576]. Realistic policies
should thus consider the impact of non-vaccinated clusters, and empirical data on vaccination behavior should be explored
also in terms of geolocating potential hotspots of non-vaccinated individuals by public health authorities.

Besides payoff driven updating, opinion dynamics is another possible explanation for the large outbreaks of some vaccine-
preventable diseases such as measles in many high-vaccination countries [577,578]. Recently, Salathé et al. assigned either
a positive or a negative opinion about vaccination to each node [573], where positive opinion means that the agent will take
up vaccination immediately, while individual with negative opinion reject vaccination due to personal beliefs, such as the
safety and efficiency of vaccine, religious beliefs, and related considerations. Subsequently, an opinion formation process
occurs based on the dissimilarity index and the strength of opinion formation. Interestingly, such a process leads to clusters
of non-vaccinated individuals, since agents with negative opinion are more likely to contact same-minded counterparts. The
invasion of a single infected agent into such a susceptible clusters may have dire consequences and dramatically decrease
herd immunity. Moreover, the research also found that, when the vaccination coverage is close to or at the level required
to provide herd immunity, this effect of opinion formation (or clustering) facilitating outbreaks is the strongest. This in turn
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indicates that the estimated coverage level to avert an outbreak of measles may be much higher than realistic demands
[548,575].

Quantitative characterization. Relative to the above primarily qualitative endeavors, Salathé et al. also defined a quantitative
framework for the mixing patterns of vaccination behavior and opinions related to vaccinating [579]. Based on publicly
available data from Twitter, they firstly constructed a directed social network of information flow, where sentiment toward
new influenza A (H1N1)-like vaccination was classified into four types: positive, negative, neutral, and irrelevant. Then,
building on the Pearson coefficient [ 176,520,580], the assortativity coefficient r is given as (relative to Eq. (99), the following
formula is actually another expression of correlation coefficient, and their detailed comparison has been proved in [581])

> eij— > ab
i i
e 7 232
1— Z afb,- ( )
i

where

a; = Zeij, bj = Zeij (233)
j i

and e;; is the fraction of edges connecting nodes of types i and j. Moreover, here r = 0 means random mixing of opinions,
while positive (negative) r values introduce assortative (disassortative) patterns, where nodes are more likely to connect
with nodes of the same (different) type. Interestingly, the research found that vaccination is positively assortative with
the sentiment score, which means that agents expressing positive (negative) sentiment are more often connected and take
(reject) vaccination. In this sense, opinion distributions in different communities (each of which usually shares common
opinion) profoundly affect the ultimate size of an epidemic. Results presented in Fig. 36 show that the likelihood of an
outbreak is enlarged, if unprotected agents are positively assorted and form susceptible clusters (due to the clusters of
negative sentiment). For further details on the role of vaccination sentiment in realistic networks, we also refer to Sections 10
and 11 for more details.

The aforementioned studies have proved that positively assortative non-vaccinated individuals in contact networks can
lead to an enlarged likelihood of large disease outbreaks [433,573,579]. To extend the universality of this finding, Barclay
et al. investigated whether such a pattern existed in influenza vaccination of contact networks among high schoolers [582].
Contact network were found to be positively assortative (measured by Eq. (232)) with respect to influenza vaccination in that
vaccinated (non-vaccinated) individuals are more inclined to link with their like. Although the overall coverage level may
be temporarily high, clusters of non-vaccinated individuals will destroy the herd immunity and may take over the largest
component of the network in the long term. Relative to the states of randomly assigned vaccination, positive assortativity
thus increases the likelihood of large disease outbreaks. Of particular importance, non-vaccinated males contribute more
than non-vaccinated females toward positive mixing patterns. Another interesting point is that the effect of non-vaccination
clusters (or positive assortativity) becomes more visible if contact durations are longer or combined.

9.2.3. Belief-decision models and dual-perspective systems
As surveyed in 9.2.2, except for payoff-driven vaccination decision-making (i.e., the game-theoretical approach)
[432,524,528], vaccination choices can also be driven by the awareness concerning the disease, and the perception one
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Fig. 36. (a) The impact of the assortativity index r on the relative risk increase (compared to risk at r ~ 0) of disease outbreaks. Blue line shows the best
fit of linear regression (confidence interval based on standard error). (b) Relative risk increase (compared to risk at r ~ 0) of disease outbreaks of a given
fraction of the population for two values of the assortativity index r = 0.075 (red) and r = 0.145 (green). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Source: Reprinted figure from Ref. [579].
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rate p is the probability that an individual finally converts to the formalized social opinion, or otherwise follows a cost-minimization choice.
Source: Reprinted figure from Refs. [443,572].

has about the vaccine and its safety. Actually, awareness has been widely identified as a significant factor in other disease
prevention measures such as social distancing [352,411,583-585]. Motivated by this fact, Xia et al. designed a belief-decision
framework (see Fig. 37(a) for a schematic illustration), where three possible vaccination decisions, i.e., to accept, to reject,
and yet to decide (or no decision), are assorted to a set of belief values [443]. The belief function for vaccination is given as
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follows

m(Yes) € [0, 1],
m(No) € [0, 1], (234)
m(®) =1— m(Yes) — m(No),

where m(Yes) (m(No)) means the probability of taking (rejecting) vaccination immediately, while m(®) represents no firm
decision and postponing the decision to the next time step. Owning to the spread of awareness of disease severity and
vaccine safety, individuals update their belief values based on the extended Dempster-Shafer theory (a theory of belief
functions or a mathematical theory of evidence, it is a general framework for reasoning with uncertainty, with understood
connections to other frameworks such as probability, possibility and imprecise probability theories. In details, such a theory
allows one to combine evidence from different sources and arrive at a degree of belief that takes into account all the available
evidence) [442], which incorporates information of connected neighbors. Interestingly, the authors found that the reporting
rates of disease- and vaccine-related events mainly affect the vaccination coverage. While another key factor, the awareness
fading coefficient, decides the time of individuals’ vaccine administration.

After the above finding, another question naturally poses itself, namely, if both the game-theoretical approach and
opinion dynamics are put together in a unified framework, how does this dual-perspective system influence the vaccination
uptake and potential epidemic outbreaks? A computational model to evaluate the impact of vaccination associated cost
and social opinions on vaccination decision-making (i.e., the interplay between payoff optimization and social influence)
has therefore been proposed and studied by Xia et al. [572]. In more detail, the cost minimization scenario assumed that
individuals (with mixed strategy) take up vaccination if the relative cost c of the vaccine is larger than the perceived infection
risK Aperc (€. € > Aperc), where

NMpon
)\perc = ,31~ <7> (235)

nvac + nnon

and nyqc (n,0n) denotes the number of neighbors being vaccinated (not vaccinated). In the opposite case, individuals give
up vaccination. Moreover, according to the social impact theory [586,587], to either vaccinate or not can be regarded
as two types of opinions, which are acceptance and rejection, respectively. Individuals then update their opinions in
terms of the Fermi-like function, where a normalized discrepancy between viewpoints replaces the previously used payoff
difference [432]. Finally, the conformity rate p is introduced to control the tendency of individuals toward social opinions
(see Fig. 37(b) for an illustration). When the conformity rate is relatively small (i.e., decision are mainly cost-based), the
effectiveness of vaccination declines with larger costs, which is as reported before in the realm of a purely game-theoretical
model [432]. However, when individuals follow social opinion (i.e., p = 1), the resulting vaccination converges to a certain
level, depending on individuals’ initial level of willingness rather than the associated cost. For intermediate conformity
rates (i.e., the joint impact of cost-minimization and opinion formation), the ultimate vaccination coverage and epidemic
incidence are completely determined by the competition between vaccine cost and initial vaccination willingness. Thus, in
addition to the determinants associated with the costs and benefits of vaccination, a voluntary vaccination program should
carefully consider also the social aspects and opinion formation in contact networks.

9.2.4. Competing controlling measures (going beyond traditional binary selection)

As mentioned in Section 9.1.4, apart from vaccination, there might also exist non-pharmaceutical interventions that
may help mitigate the risks and seem of particular importance before effective vaccines are widely available [52,54,59,
411,502,588,589]. However, the majority of existing research considers either vaccinating behavior or non-pharmaceutical
interventions separately. The effectiveness of the combination of both types of interventions on social or empirical networks
may thus, at least to some extent, be beyond our knowledge (although both are used in some disease such as influenza).
Aiming for a better understanding of this issue, Andrews et al. recently proposed a model of competing interventions,
which assesses the decision on the basis of subjective expected utility theory [440]. It is worth mentioning that, unlike
by vaccination, susceptible/infectious individuals will implement non-pharmaceutical interventions on different neighbors.

Of note, there exists a tradeoff between two measures. If the vaccination coverage increases, the decay of infections
and the resulting changes in transmission patterns enable a decrease in the practices of non-pharmaceutical interventions.
Similarly, if non-pharmaceutical interventions become more common, vaccination coverage will decrease by roughly
a similar extent. Even if changing the utility or the perceived risk, it seems impossible to simultaneously enhance
the effectiveness of both measures. Moreover, it was also revealed that efforts to reduce spreading by expanding
non-pharmaceutical interventions are almost completely mitigated by the resulting drop in vaccine coverage, whereas
efforts to expand vaccine uptake are only weakly affected by the response of non-pharmaceutical interventions. Thus,
(lack of) vaccination interferes more strongly than non-pharmaceutical interventions as the primary determinant of
influenza incidence. Along this line, when considering multiple intervention programs, officials should pay particular
attention to the potential interference among them, in particular looking out for (dis)assortativity between vaccination
and non-pharmaceutical interventions in real-life situations. It is important to communicate to the public that these are
complementary rather than exclusive measures to mitigate an outbreak.
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9.3. Behavior-vaccination dynamics on temporal networks

In the above subsections, we have reviewed the remarkable advances in understanding vaccination and the spread of
epidemics in structured populations, which were described by different complex, yet static networks. While many empirical
observations could be explained in this theoretical framework [431,432,524,579], it is nevertheless a fact that most social
interactions among people change over time. Accordingly, a more apt description involves using time-varying or temporal
networks [52,217,590-593]. Such adjustments may of course be unrelated to vaccination and epidemics, or they can happen
precisely because of this. Either way, changes in the interaction structure of social networks affect how we vaccinate and
how effective our measures are aimed at mitigating epidemics. In this subsection, we therefore cover an important aspect
of behavior-vaccination dynamics in structured, networked populations, namely that on temporal networks. To that effect,
we consider two representative examples.

9.3.1. Outcome inelasticity and outcome variability on adaptive networks

Early on in epidemiology, it has been pointed out that adaptations of various kinds can lead to a series of interesting
phenomena, such as degree mixing patterns, oscillations, hysteresis, and phase transition between disease-free and endemic
states [52]. Along this line one might wonder, if a vaccination program is placed onto an adaptive network, how do the
epidemic incidence and vaccination uptake co-evolve with time? To address this question, Morsky et al. have recently
proposed and studied an edge turnover effect on networks [594]. Naturally, if an individual in a network is vaccinated
(not vaccinated) and dies from adverse side effects (an infection), any links from and to it are removed from the network
(technically, since the links are undirected, simply an edge is removed). To maintain the balance in the system, i.e, the
average number of edges in the network, the same number of edges are re-introduced randomly among pairs of individuals,
whereby not allowing multiple connections. Interestingly, such a relatively simple and straightforward setup gives rise to
three vaccination regimes. These are successful ring vaccination, widespread vaccination, and no vaccination, all owing
to a different frequency of edge turnovers that are related to the death of individuals in the network. Moreover, it was
shown that stochastic effects can lead to a large variability in outcomes. For the same parameter values, some realizations
guarantee fast control, while others cannot prevent a fast-spreading epidemics. This indicates that the outcome of voluntary
vaccination on adaptive networks may be highly unpredictable, precisely because the interaction structure changes over
time. Thus, many arguments put forward above for static networks simply do not hold. There exist inherently nonlinear
feedback mechanisms between behavior and disease dynamics, which can result in policy resistance or outcome inelasticity,
neither of which would be observed on static networks in the traditional models that did not take strategic interactions
or behavioral responses to disease dynamics into account [229,520]. This gives rise to extreme events that we are only
beginning to uncover and study, and which certainly shed new light into just how complex successful vaccination policies
might turn out to be.

9.3.2. The impact of closeness driven time-varying topology

Along similar lines, in [595] authors proposed a closeness-driven time-varying framework. In an instantaneous network,
every individual connects to an acquaintance with probability p, or with probability 1 — p to a random node [596]. After
an instantaneous network is formed in this way, the vaccination game proceeds with an imitation rule at the heart of
the microscopic dynamics [432]. These two steps, i.e., the creation of the instantaneous network and the evolutionary
vaccination game proceed repeatedly until a steady state is reached. In the absence of vaccination there is monotonous
increase in the size of the epidemics. Conversely, if vaccination is introduced, the epidemic incidence reaches a peak and then
drops due to the enhanced crisis awareness. More importantly, the increase of p greatly weakens the vaccination enthusiasm
of individuals, since the links among acquaintances provide convenient conditions for herd immunity. These results indicate
that closeness likely plays an important role in decreasing both the epidemic propagation and vaccination.

Although existing research already conveys clearly that temporal networks bring about novel phenomena in the
mitigation of epidemics and the promotion of vaccination, there is still ample room for further research, for example related
to the importance of different time scales that describe changes in the network, in the epidemic transmission, and in the
vaccination uptake, where differences can markedly determine the fate of the population [597,598]. Further research on
behavior-vaccination dynamics on temporal networks also requires better integration with empirical data, which we cover
in more detail in Section 11 [599,600].

9.4. Behavior-vaccination dynamics on multilayer networks

In addition to static and temporal networks, the most recent frontier in network science are the so-called interdependent
or multilayer networks [202,337,601,602]. The main premise behind multilayer networks is that a single layer of interactions
is likely insufficiently accurate to describe the complexity of our social interactions. Arguably, each individual is likely a
member in many social networks, including online social networks, and all these interactions shape markedly our perception
of vaccination in the broadest possible sense. Although one may argue that all these interactions could be placed under
the umbrella of a single network, the multilayer network perspective nevertheless creates better conditions for properly
studying such social systems.
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Fig. 38. Schematic illustration of behavior-vaccination dynamics on multilayer networks, which consist of social and biological contagion networks. The
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layer in isolation, such as the rise and fall of vaccine coverage during a scare scenario.

Source: From Ref. [608]. Reprinted with permission from AAAS.

Not surprisingly, multilayer networks have recently been the subject of many novel frameworks to study various
dynamical processes, such as epidemic spreading [215,230,371,603], diffusion [341], voting [604], synchronization [605],
and the evolution of cooperation in game-theoretical models [606,607] (see [202,337] for systematic reviews). In this
subsection, we therefore cover the still very young field of behavior-vaccination dynamics on multilayer networks.

9.4.1. The general framework and an example

With respect to coupled disease-behavior dynamics on multilayer networks, one recent work firstly provided a brief,
conceptual framework, where the system is composed of two networks: the social contagion network [609,610] and the
biological contagion network [608]. The former is assumed to support the spreading of opinions and sentiments related with
vaccination, while the latter allows the propagation of the virus through local intra-layer connections. When both networks
are coupled together, a feedback loop between layers spontaneously emerges, which generates more complex dynamics
beyond either isolated network layer (see Fig. 38 for a schematic illustration). For instance, the vaccination opinions on
the social contagion network may play a positive or a negative role in the epidemic trajectory on the biological contagion
network and vice versa.

Along this main idea, Fukuda et al. recently proposed a multilayer infrastructure, which is composed of a disease
transmission network and an information propagation network through which individuals update their vaccination
strategies and health information [611]. Compared with the evolutionary outcomes in the traditional single-layer
network [432], it has been discovered that multilayer infrastructures typically suppress the vaccination coverage, resulting
in relatively larger and more common epidemics. Although middle-degree and large-degree nodes show higher vaccination
enthusiasm, numerous small-degree nodes make the propagation of vaccination very difficult, which is further exacerbated
by the propagation of negative opinions in the other layer. Overall, successful vaccination policies in multilayer networks
require even more care and consideration to account for multiple channels along which potentially discouraging information
about vaccinating may spread, as we review also in the next subsection.

9.4.2. Parallel, interacting dynamics on different networks—The impact of opinion clusters

As in the case of [433,573,579,582], when opinions of individuals toward vaccination are influenced by their neighbors
or social groups on networks, the susceptible/unvaccinated clusters can readily arise, which directly affects the likelihood of
disease outbreak. Even with very high vaccination coverage, outbreaks can still occur via these clusters [433,573]. However,
empirical evidence suggests that the transmission of infections is sometimes separated from decision-making. One typical
example for this reasoning are childhood diseases, for which the primary risk group are young children, while the decisions
about vaccination are of course taken by their parents [549,613-615]. Motivated by this fact, already in 2009 Eames used a
multilayer network setup, where one network supports the opinion formation among parents (i.e. parent network), while
the network of children allows infection transmission among offspring (i.e. offspring network) [612]. When parents and
children are distributed on each network layer, offspring share their parents’ locations (denoted by the inter-layer links)
and intra-layer connections, whose fraction is controlled by the parameter F. F = 1 means that each intra-layer link in
the offspring network also appears in the parent network, i.e. both network layers are identical; while F = 0 indicates
that parent and offspring networks have no shared intra-layer connection. Using an identical opinion updating dynamics as
in [573], it was reported that even if the vaccination level is extremely high, the opinion formation process greatly enhances
the outbreak likelihood, relative to the case without opinion dynamics (see Fig. 39(a)). Because the opinion of not to vaccinate
is inclined to clustering among parents, this naturally gives rise to susceptible offspring clusters and thus creates significant
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Source: Reprinted figure from Ref. [612].

infection risks. Interestingly, the above observation still remains intact, though less dramatic, when the overlap fraction is
low, as shown in Fig. 39(b).

To quantify the difference between outbreak probability with and without opinion formation, in [612] the author further
defined the effect of opinion clustering

> {Prob (Outbreak with opinion) — Prob. (Outbreak without opinion)}

vaccination levels,c
A= - — . (236)
> Prob. (Outbreak without opinion)
vaccination levels,c

As shown in Fig. 39(c), the effect of social influence monotonously increases with the amount of overlap between the two
networks. When the two networks share many contacts, clusters of parents who choose not to vaccine are more likely
to have interacting children, generating clusters of unvaccinated offspring and thus ultimately enhancing the risk of an
infection, which is then likely followed by an outbreak. In this sense, non-overlapping intra-layer connections between the
networks of parents and their offspring seem to be an important factor for determining the desired vaccination coverage for
a successful mitigation of disease.

While the above-reviewed research already delivered inspiring results, just as with temporal networks, the study of
behavior-vaccination dynamics on multilayer networks is still very much a developing field with vast possibilities for
innovative future research. The evolution of links between different network layers, as well as their weight in determining
the course of vaccination in comparison to within-layer links are still very much under-explored subjects, just as potential
extension of the basic theoretical framework to more than three layers.

So far, we have surveyed most achievements about behavior-vaccination dynamics in networked populations, which, as a
whole, provides novel insight into real-world disease prevention under vaccination policy. To obtain a clearer understanding,
Table 6 provides a summary of these new characteristics. We also notice because temporal networks and multilayer
networks are two novel frameworks in network science, more efforts from statistical physics and mathematics are still
needed to enrich the content of behavior-vaccination dynamics in future. Moreover, another fantastic point is that, except
for infectious diseases, complex contagion [364] and corresponding behavioral vaccination strategy [395] deserve great
attention as well, especially combining with lots of emerging data in this realm.

10. Measuring and assessing vaccination levels: traditional approaches

Due to the overwhelming public health benefits of vaccination, governments and public health institutions around the
globe have invested substantial efforts to immunize their populations against vaccine-preventable diseases. The population
dynamics of vaccine-preventable diseases depend strongly on the magnitude and distribution as well as the efficacy of
vaccines in the population, but measuring these indicators is not always easy. First, measuring the vaccination coverage -
the percentage of the population that has been vaccinated - is subject to numerous difficulties and biases. Second, even when
vaccination coverages can be measured accurately, measuring the distribution of vaccination in the population - i.e. which
parts of the population have been vaccinated - remains challenging. Third, the effect of vaccination on population immunity
will ultimately depend crucially on the effectiveness of the vaccine, a hard-to-measure but crucial indicator for many public
health policies. In this section, we review the challenges associated with assessing the vaccination status of a population.
These challenges are not only relevant from a data perspective, but they are also crucial to inform modeling efforts.

10.1. Measuring vaccination coverage

In an ideal world, vaccination coverage would be easy to assess. Every individual in a population who receives a vaccine
would be centrally registered, allowing for an always accurate calculation of the percentage of the population vaccinated.
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Table 6

Summary of behavior-vaccination in network populations.
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behavior-vaccination

Observed physics phenomena

Lattice

ER graphs
SW networks
SF networks

Social contact networks
Urban networks
Technological networks

Temporal networks
Adaptive networks

Multilayer networks

Monte Carlo simulation
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Monte Carlo simulation
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theory
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Fig. 40. A vaccination paper card, showing the various improvisations made over time. (Photo courtesy of Carolina Danovaro, Pan American Health

Organization.)
Source: Reprinted figure from Ref. [616].

In practice, numerous problems stand in the way. On the numerator side, the number of people vaccinated is rendered
inaccurate by the non-continuity of registration systems, by migration flows, and record duplications, as well as other
challenges. On the denominator side, estimates can be equally inaccurate for a number of reasons. The various challenges
are particularly difficult in low- and middle-income countries, where registry systems are often manual, patchy, or entirely
absent.

The potential inaccuracy in estimates at the administrative levels means that measures from alternative data sources
need to complement the numbers. Surveys in particular are a well-established source for alternative vaccination coverage
estimates. Globally, there are four types of surveys that are commonly employed: Demographic and Health Surveys (DHS),
Multiple Indicator Cluster Surveys (MICS), the Expanded Programme on Immunization cluster survey (EPI), and surveys
using the Lot Quality Assurance Sampling (LQAS) method. These common surveys have different characteristics with respect
to the primary objectives, the sampling scheme, household selection, total sample size, questionnaire length, duration, and
so on [616]. They all suffer from a number of biases, of which two are typically highlighted: (i) a selection bias due to
sampling methods that are non-representative or reflective of poor field practices, and (ii) an information bias generally
- but not exclusively - due to inaccurate data recording manual records involving a paper card retained in the household
(Fig. 40). Many of these problems are expected to worsen in the future because of the increased complexity of immunization
schedules.

In recent times, biomarker surveys have been added to the methods to measure vaccination coverage. While the presence
of antibodies is a good marker of immunity, it is typically impossible to distinguish whether their presence is due to
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vaccination or to natural infection. Furthermore, while natural infection often causes life-long immunity, most current
vaccines require booster shots because of the waning levels of antibodies following vaccination [617]. On the other hand,
the case is reversed for some pathogens such as tetanus, where natural infection causes a short-lived immunity while
vaccination can provide life-long immunity [618]. Some vaccines, such as the Hepatitis B vaccine, cause the presence
of antibodies that are not created following natural infection [619], providing a clear measurement of vaccination, but
this is the exception rather than the rule. And because of waning antibody levels, the number of doses can still not be
reliably estimated [620]. To complicate matters further, re-exposure to pathogens can trigger an increase of antibody levels
(“immune boosting”), often without developing symptoms, as appears to be the case in whooping cough [621-624]. Indeed,
it has been suggested that immune boosting must be more easily triggered than primary infection to account for age-
incidence data found in the recent increase in whooping cough cases in teenagers and adults [625].

10.2. Vaccine efficacy and effectiveness

Many studies looking at the effects of vaccination on disease dynamics at the population level assume that vaccines have
100% efficacy. In other words, they assume that in the vaccinated group, the disease incidence following vaccination is zero.
This assumption is generally wrong. At its most basic level, vaccine efficacy can be defined as the opposite of the relative risk
(RR) among vaccinated individuals [626]. It corresponds to the relative reduction of disease attack rate in the unvaccinated
group (ARu), compared to that of a vaccinated group (ARv), all else being equal:

ARu — ARv
ARu

In order to comply with the “all else being equal” requirement, vaccine efficacy is usually assessed through double-
blind, randomized, clinical controlled trials, representing best case scenarios. The vaccine efficacy so established is usually
a requirement for a new vaccine to be licensed by the relevant governmental authorities.

Vaccine efficacies vary widely. In influenza, where a new vaccine is developed each year to prevent seasonal influenza,
vaccine efficacy can vary dramatically depending on the match of the vaccine with the dominant circulating flu strains.
A recent meta-analysis [627] has shown that influenza vaccine efficacy has been measured to be between 8% and 93%,
depending on the vaccine type, the year, and the study population. The pooled efficacy of the trivalent inactivated vaccine
in adults of age 18-65 was 59%. For the vaccine preventing Human Papillomavirus (HPV) infections, meta-analyses have
shown a vaccine efficacy of 78%-90% [628]. The efficacy of an acellular pertussis vaccine among adolescents and adults was
shown to be 92% [629].

Vaccine effectiveness needs to be distinguished from vaccine efficacy. While vaccine effectiveness measures the same
outcome of interest - relative reduction of disease attack rate - it does so in an observational way under field conditions,
rather than in clinically controlled experiments. Vaccine effectiveness is therefore influenced by many factors, including,
but not limited to, vaccine efficacy. These factors include vaccine characteristics as well as host factors such as age, previous
vaccinations and infections, etc. It is easy to see that all the challenges relate to vaccine coverage surveillance outlined above
apply also to studies of vaccine effectiveness. Because vaccine effectiveness studies do not require clinically controlled trials,
there are more data available on vaccine effectiveness than on vaccine efficacy. Vaccine efficacy is often assessed during or
after outbreaks. For example, recent data obtained from a large-scale outbreak of measles in a German public school was
analyzed resulting in an estimate of the measles vaccine effectiveness of over 99% (following two doses of vaccination) [630].

Vaccine effectiveness and vaccination coverage combine to create the dynamics of infectious diseases observed in
populations. In all populations, there will be non-vaccinated individuals, and there will be individuals for which the vaccine
does not prevent disease. During a disease outbreak, we can therefore expect both unvaccinated and vaccinated individuals
to fall ill. Under the assumption of random mixing, the fraction of unvaccinated individuals among individuals with disease
can be easily calculated. The susceptible population is the sum of the number of unvaccinated individuals U, and the
vaccinated individuals who remain susceptible despite vaccination, V, i.e. S = U + V. If these two types of susceptible
individuals get infected with the same probability, then the fraction of unvaccinated individuals among diseased individuals
will be U/(U + V). Expressed in terms of vaccination coverage x and vaccine effectiveness 7, individuals can be susceptible
because they did not get vaccinated (1 — x) or because they did get vaccinated but the vaccination did not render the
individual immune (x(1 — 7)). Thus, the total susceptible fraction of the populationis 1 — x + x(1 — 7) = 1 — tx, and the
fraction of unvaccinated individuals among diseased individuals is

x(1—1)
1—1tx

=1—RR. (237)

(238)

This relationship can be leveraged for multiple purposes. First, it can be used to estimate vaccine effectiveness. If the
proportion of cases occurring in vaccinated and unvaccinated as well as the vaccination coverage x is known, vaccine
effectiveness t can be easily calculated [631]. Secondly, it can be used to estimate vaccine coverage, if the proportion of
cases occurring in vaccinated and unvaccinated as well as the vaccination effectiveness 7 is known. This can be particularly
helpful in situations where the vaccine effectiveness is well known, such as in the case of measles [632]. An increase in
the fraction of cases among unvaccinated individuals may seem counter-intuitive and worrisome, but indeed is most likely
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an indicator of increasing vaccination coverages. The opposite case is just as true, and particularly relevant in situations of
increasing vaccination hesitancy.

Overall, the ability to measure, or at least accurately estimate vaccination and immunization levels in a population
are of crucial importance to public health, and the modeling efforts. As outlined above, the practical challenges have
historically been quite substantial, and continue to pose problems. At the same time, the advance and widespread adoption
of technology, and in particular also consumer technology such as the internet and mobile computing devices, can help
supplement these efforts. In the next chapter, we will discuss the approaches based on a new set of methods broadly
encapsulated under the term digital epidemiology.

11. Digital epidemiology

As discussed in many of the previous sections, the ability to timely monitor the unfolding of outbreaks, as well as the
capacity to capture our contacts, movements and communications are keys to characterize the spreading of infectious
diseases. This observation is quite intuitive and clear; perhaps since the very first epidemiological studies. However, major
challenges in the data collection process have impeded developments for many years. Let us think first about surveillance
systems. In many countries, health departments have the mandate to collect epidemiological data. In the USA for example,
the surveillance for influenza like illnesses (ILI) is conducted by a network of about 3000 healthcare providers [633]. As we
noted in Section 10 traditional surveillance approaches are affected by many limitations [634]. Data is typically affected
by large delays and backlogs. The geographical granularity of the sample is heterogeneous across the country. Furthermore,
selection biases might play a major role. Indeed, only a fraction of infected individuals visit a doctor. These cases are typically
associated with complications or legal requirements (leave from work). Data collections challenges have been even more
pronounced in the observation of human dynamics relevant for diseases spreading. Indeed, the characterization of the
way we interact, move and communicate has been relegated to ad-hoc small-scale studies for many years. The inherent
complexity of such processes strongly limited the attempts to study their properties in these settings [635,636].

The digital revolution helped, and is helping, to lift such limitations [637]. Nowadays more than 3 billion of people had
access to the Internet. About 7 billion phone subscriptions have been activated, and more than 20% of them are associated
to smartphones. As result a large fraction of our activities is digital, often online. Communication using social networks,
emails, blog posts, and other forms of digital media are now commonplace. Countless online resources are now used to
access information that researchers can efficiently mine using search engines. Furthermore, the miniaturization of devices
created a wide range of wearable able to measure our interactions, movements, as well as vital signs [638].

It did not take long before researchers saw the potential of these new technologies for epidemiology [639-641]. Indeed,
the large amount of data we generate, or that we can collect, contains crucial epidemiological indicators. Just to mention
few examples, think people speaking about their health on social networks, or searching for diseases’ symptoms on search
engines. Furthermore, think about the uses of GPS data to characterize human mobility at different geographical scales, of
RFID (radio frequency identification devices) tags to identify the features of human face-to-face contacts, or of mobile apps
to gather health information from users that sign-up. This unprecedented wealth of data is at the basis for the development,
test, and refinement of many modeling approaches discussed in the previous sections.

In the following, we will review recent developments in this arena (also see Table 7 for a systematic summary in
advance). In doing so, we will consider three main approaches according to the data collection process. We will first consider
participatory methodologies that rely on individuals voluntary contribution to the data collection. We will then present
passive approaches that identify and extract epidemiological relevant indicators from the digital traces of our daily activities.
We will then conclude presenting mixed approaches of the previous two.

11.1. Participatory digital epidemiology

The widespread diffusion of Internet connections and the miniaturization of devises is providing unprecedented
opportunities to collect epidemiological relevant information with the direct participation of large number of individuals.

11.1.1. Participatory platforms for digital surveillance

Mobile and web-based applications can be effectively used to monitor the emergence and unfolding of outbreaks in
near real-time [642,643]. FluNearYou [644,645], and InfluenzaNet [646,647] are two examples. The first platform engages
individuals living in USA or Canada. The second instead is based in Europe and includes 11 different countries. The main
idea behind both initiatives is to complement the classic ILI surveillance systems crowdsourcing the data collection. Indeed,
users that sign-up become sentinels. Every week, during the influenza season, they receive a request to answers few
questions covering geographical, behavioral and medical information. In other words, the two platforms are systems for
digital surveillance. Remarkably, several studies have shown that the ILI incidence estimated using these platforms is highly
correlated with the classic ILI surveillance data [645,647,648]. With minimal participation from the subscribed users they
allow to overcome several limitations of the classic systems. The data collection is inexpensive, and scalable. The data can
be visualized in near real-time, providing interactive maps describing the current unfolding of ILIs that are readily available
for modeling efforts at the sub-population level as those described in Sections 3 and 8. Another crucial advantage of these
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Method

Data collection process

Relevance for epidemiology

Main advantages

Main disadvantages

Participatory digital
epidemiology

Non participatory
digital
epidemiology

Surveillance platforms
and wearable devices

Social media and
mobile phones

Estimation of disease
indicators and
characterization of
face-to-face interactions

Estimation of disease

indicators, characterization

of social interactions and
human mobility

Near real-time
estimations, access to
different geographical
granularities, detailed
characterization of
social interactions
responsible for the
spreading of human to
human diseases

Large sample size,
cheap data collection
process, near real-time
analysis, access to
different geographical
granularities,
characterization of

Sample size is typically small,
reliance on users’ participation

Correlations might be spurious,
the interactions observed might
not be relevant for disease
spreading, keyword selection
not trivial, changes in platform
design might influence users’
behaviors

87

human mobility and
its impact in disease
spreading

Mixed methods Performance tied to users

participation

Near real-time
estimations, data
classification
improved by users’
participation

Estimation of disease
indicators and discovery of
new outbreaks

Social media and users
participation

approaches is the reduction of back-logs and delays in cases reporting. This issues is particular relevant during the initial
phases of the flu season when its severity and general characteristics are mostly unknown. The delays and back-logs of the
traditional surveillance introduce a posteriori change in the projections making forecasts a difficult task. In other words, the
“ground truth” used to inform models is far to be stable and reliable. Instead, data from digital surveillance can be used to
inform realistic and geographically resolved epidemiological models with timely and high resolution intelligence that can
be adopted to define precise initial conditions necessary for the simulations [649].

Another important aspect of the data collection is the ability to access behavioral information as for example the
vaccination status of each user. On one side this allows geographically resolved real-time evaluation of vaccination rates
complementing those gathered via traditional approaches (i.e. Section 10) and might be used to refine the input for the
modeling efforts described in Sections 3 and 8. On the other side, it allows to estimate the vaccination efficacy overcoming
the issues of classic observational studies [650]. These are often cohort studies performed considering, retrospectively,
health records of vaccinated and not vaccinated patients. Clearly, the same selection biases, black-log and delays we saw
afflict clinical surveillance are a problem also in this case. Digital surveillance approaches, although not perfect, clearly
mitigate these issues. For example, while selection biases can be still a problem, well crafted questionnaires can alleviate
them. Again, the main advantage is the scalability of such methods, and the possibility to perform near real-time analysis.

When considering participatory platform for digital surveillance, it is important to stress that these application have
been developed to complement, not substitute, classic surveillance systems. Indeed, the detailed characterization of
circulating strains is crucial and can be achieved, at the moment, just in clinical settings. However, the penetration of
mobile and connected devices in developing countries is offering unprecedented opportunities to gather richer and timely
epidemiological data in cases where classic surveillance methods are typically limited.

11.1.2. Measuring and understanding close proximity interactions

The data and collection methods we just introduced, provide critical information to estimate diseases prevalence and
vaccination rates. However, they do not provide any explicit information about the spreading pathways. From a modeling
standpoint, such data can inform just mean-field modeling efforts (see Sections 3 and 8). Our close proximity contacts are
responsible for the spreading of infectious diseases. As discussed in Section 4 social networks are far from homogeneous
and their nontrivial properties have critical effects on the spreading of infectious diseases. For many years, empirical studies
devoted to characterize their features have been centered on surveys and diaries [651]. Potentially, these methods allow
to gather information regarding the number, location (work, home, or other places), duration, and frequency of contacts as
well as the health status of the respondent [652,653]. However, they are affected by several limitations as the scalability
in terms of costs and individuals engagement [652], the introduction of biases by the self-reporting of events/contacts
[652,654-656], and the introduction of biases by the survey design [652].

The incredible advances in technology as the reduction of costs and sizes of devices allowed the development of a wide
new spectrum of methods to measure close proximity contacts. In the following, we will focus on those that are participatory
in nature: individuals are asked to voluntarily participate to a data collection process where their close interactions are



88 Z. Wang et al. / Physics Reports 664 (2016) 1-113

measured via some device as smartphones or RFID tags [393,657-670]. According to the technology used, the data collection
can span few hours, days, or months. Smartphones allow longitudinal data collections. However, they can record proximity
interactions (via bluetooth or WiFi) that are not necessarily relevant for the spreading of infectious diseases [651,659-661,
664,666,667,670]. Furthermore, as we will see later, smartphones allow to access/collect a rich set of data that can be used
to better understand different aspects of human dynamics ranging from digital interactions to mobility patterns [670].
RFID tags instead can be tuned to detect actual face-to-face interactions. However, they require (i) participants to wear
specifically designed devices (ii) the presence of stationary nodes deployed to collect information about the location of
each interaction [651,671]. For these reasons, the data collection with this technology is limited to short time periods and
controlled settings.

In general, all these tools have major advantages respect to traditional methods. First, technology makes their deployment
cheap, simple and scalable. Second, they provide an objective measurement of close proximity contacts. Few recent
comparative studies have shed some light in the difference between contact networks estimated by traditional approaches
(surveys and diaries) and those gathered via wearables [655,672]. The findings show that traditional methods miss the large
majority of short contacts, and overestimate the duration of all interactions. Furthermore, the engagement of individuals
with traditional methods is reduced respect to those based on wearables. Notwithstanding these limitations, traditional
methods reproduce with good accuracy strong ties that are likely to be responsible to sustain the local unfolding of infectious
diseases. However, they provide an incomplete picture. Indeed, they miss weak ties that have been identified as crucial
connections to bridge separated clusters of individuals, thus fundamental for large scale outbreaks [347,672,673].

The analysis of the data collected with wearable devices allows to characterize with precision the features of close
proximity contacts. The first important observation is that contact networks are time-varying [218,651,674,675]. The
distribution of individuals activity, the duration and time intervals of contacts are typically heterogeneous implying the
absence of characteristic scales, i.e. averages are not good descriptors. Consequently, the role played by each individual in
the spreading is heterogeneous. Furthermore, for diseases in which the probability of transmission is function of the time
spent in contact, different interactions might be associated with very different transmission potentials. In particular, the
large majority of contacts are short and thus associated with small transmission probabilities. However, some contacts have
duration that is much larger than the average and thus can be extremely important for the spreading. The heterogeneity
in time intervals between contacts, burstiness [676], has been associated with a rich, case-dependent, phenomenology that
can either slow down [677-682] or speed up [683,684] the spreading. Interestingly, the dynamics ruling the evolution of
contacts change depending on the time-scale considered [651,674]. In other words, the mechanisms driving the formation
of contacts at the time-scale of minutes are different than those at the time scale of months [674]. This is of particular
importance when studying the spreading of infectious diseases [229,592,595,683,685-703]. Indeed, contacts dynamics
that affect the spreading of transmissible illnesses are those unfolding at comparable time-scale respect to the disease
[218,651,675,685]. For example, the characteristics of contacts networks at the time-scale of days are relevant for the
spreading of ILIs. In order to show more clearly this crucial point we will now consider a simple, yet not trivial, model
of temporal human interactions. This modeling framework is based on the empirical observation that the propensity of
individuals of being engaged in social acts, activity, is heterogeneous [595]. Interestingly, such observations have been
performed in a wide range of real datasets describing different types of human interactions or human dynamics ranging
from conversations on Twitter to R&D alliances between firms [595,704]. For a given time interval At the activity of each
node i can be measured as the fraction between the number of interactions made by i, n;, divided by the total number of
interactions made by all the nodes:

(239)

While the value of a; might change in time [705], observation in real data shown that the distribution of activity is virtually
independent of the choice of At [595,703,704]. This candidates the activity as good variable to describe some important
aspects of time-varying networks. The modeling framework we are describing starts from such evidence and generates so
called activity-driven networks [595]. Each node is assigned to an activity a extracted from a distribution F(a). At any time
step t the network G; is build starting from N disconnected vertices. In their simplest form the creation of activity networks
is as follows:

e With probability a; At the node i becomes active and generates m links connected to m randomly selected nodes
e With probability 1 — a; At the node will not be active. However, it will still be able to receive connections from other
active vertices.

To reproduce empirical observations, activities are extracted from heavy-tailed distribution as for example F(a) ~ a~¢ with
a € [€; 1]. The average number of active nodes at each time step is N (a) that is in general much smaller than N. Consequently,
the large number of nodes will be not active and the topology of each G; will be based on set of mostly disconnected stars
centered around active nodes. On the other end, it is possible to prove that integrating links over sufficient T time-steps
such thatk/N « 1and T/N < 1 the resulting network will have a degree distribution that follows the activity distribution
[595,695]. In other words, the heterogeneity in the number of contacts integrated over time is driven by the heterogeneity
in the propensity of nodes to be engaged in social acts. In this model, hubs emerge in time due to their constant engagement
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rather than due to some first mover advantages as in classic preferential attachment models. In general, the full dynamics
of the network and its ensuing structure is completely encoded in the activity distribution. Interestingly, it is possible to
derive the epidemic evolution equation in which a spreading process and the network dynamics are coupled together. We
will consider an SIS model, but the same results holds for an SIR. As done throughout the review, let us define §; the infection
probability per contact, and y the recovery rate. At a mean-field level, we can assume that nodes with the same activity a
are statistically equivalent. In these settings, we can describe the epidemic process considering the number of infected
individuals in the class of activity rate g, at time ¢, as I|. The number of infected individuals of class a at time t 4+ At is given
by
t+At t t t t 115’ t t /I;,G/Af

1,7 =1, — yAtl, + Bim(N, — Ia)aAt/da N + Bim(N, —1,) / da N (240)
where N, is the total number of individuals with activity a [595]. In Eq. (240), the second term on the right hand side refers
to infected nodes that recover, the third term takes into account the probability that a susceptible node of class a is active
and acquires the infection getting a connection from any other infected individual, while the last term takes into account the
probability that a susceptible node, independently of his activity, gets a connection from any infected active individual [595].
In order to solve Eq. (240) we can consider the total number of infectious nodes in the system by summing over all the activity
classes:

/dala“’m =["TAL = ' — y AL + Bm{a) Atl' + Bimb* At, (241)

where ' = f da’Ié,a’ and we have dropped all second order terms in the activity rate I'. Indeed, we are interested in the
early stages of the spreading where the number of infected individuals is much smaller than the number of susceptible
nodes. In this regime the equation can be linearized. In order to obtain an closed expression for & we multiply both sides of
Eq. (240) by a and integrate over all activities, obtaining the auxiliary equation

OFAt = 9t — y ALO" + Bim(a®)I' At + Bim(a)0t At. (242)

In the continuous time limit we obtain the following closed system of differential equations
I = —yI + Bym(a)l + Bymo, (243)
30 = —y0 + Bm(a®)l + fm(a)o, (244)

whose Jacobian matrix has eigenvalues

Apg = (@)pfm —y £ imy/(a?). (245)

The epidemic threshold for the system is obtained requiring the largest eigenvalue to be larger than 0, which leads to the
condition for the presence of an endemic state [595]:

B 1 (246)

v M(a)+/{a®)

The epidemic threshold can be derived considering that the per capita infection rate is given by the infection probability per
contact, 8, times the contact rate, (k): A; = B, (k). It is easy to prove [595] that (k) = 2m(a), and consequently

A 2((1)
—> —.
v {a) + ()

The threshold is function of the first and second moments of the activity distribution thus it takes into account the dynamics
of interactions. Furthermore, the epidemic threshold is not function of the time-aggregated network presentation. It depends
just on the interaction rate of nodes. This results show the importance of time-scales. Indeed the spreading condition is
dependent on the interplay between the time-scales of the network and spreading process. It is important to remember
how in the case of uncorrelated annealed networks the threshold is function of the first and second moment of the degree
distribution (see Section 4 for the detailed derivation). In Fig. 41, we show the density of infected individuals in the endemic
state as a function of A;/y for three different networks [595]. In green diamonds and blue squares we show the results
obtained running an SIS model in static networks generated aggregating links of an activity-driven network over T = 40
and T = 20 time-steps respectively. In red circles instead, we show the results obtained running an SIS model on activity-
driven networks in which both links and disease evolve in time. Clearly, the results are quite different and show the effects of
dynamical connectivity patterns on disease spreading. In particular, the threshold in static networks is significantly smaller
than in their time-varying networks counterparts. Indeed, in static networks the disease can spread using all links activated
in a certain time period independently of their activation time or order. In time-varying graphs instead, the disease spreads
over a different, more homogeneous, topology in which at each time-step just few links are available for the contagion.

(247)
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Fig. 41. Density of infected nodes, i, in the stationary state, obtained from numerical simulations of the SIS model on activity driven networks and two
others resulting from an integration of the model over 20 and 40 time steps, respectively. N = 10°, m = 5, F(a) o< a~¢ with¢ = 2.1and € < a < 1 with
€ = 1072, Each point represents an average over 10 independent simulations. The dashed line marks the analytical epidemic threshold in Eq. (247).

Consequently, the disease will need a larger per capita infection rate or smaller recovery rate in order to percolate in the
system.

In their simplest form' activity-driven networks consider a very simple and unrealistic link formation mechanism. In-
deed, empirical contact networks are characterized by several types of correlations as moderate modularity, transitivity
and different types of assortativity [393,582,670,678,707]. In order words, individuals do not form random connections but
tend to connect in groups/communities [ 189]. For example, a study conducted in a high-school showed significant levels
of clustering and different types of assortativity. In particular, the project collected data for three days in a high-school
with a population of about 1000 individuals (students, teacher, and staff) [582]. Each day about one third of them volun-
teered to wear a tag to collect their close proximity contacts and shared their flu vaccination status via an online survey. The
assortativity measured considering the vaccination was significantly more positive than what expected by chance [582].
Furthermore, the levels of assortativity increased for longer contact duration and combining all data collected across the
three days. The mechanisms driving such features could be associated to differences in vaccination coverage and assorta-
tivity within sub-networks such as age, gender, role, and ethnicity [582]. Some hints supporting these hypothesis are found
in the coverage respect to gender and role. Around 48% of female reported to be vaccinated respect to 33% of male. Around
52% of staff reported to be vaccinated respect to 39% of students. Remarkably, epidemics spreading simulations suggest that
the observed features of contacts networks might induce larger average outbreak size and increase the probability of such
outbreaks [582]. More in general, the presence of correlations in links’ creation might have contrasting effects on disease
propagation. Locally the presence of dense connections might promote the propagation (especially in SIS models), the low
connectivity between communities might hamper and slows down the global spreading [ 194,590,696,708,709].

Summarizing, empirical contact networks are characterized by heterogeneous activity, duration and time intervals
between interactions as well as different types of correlations shaping the creations of links. Interestingly, a recent and
simple model able to reproduce many of these properties has been developed [710,711]. The basic ingredient of the model
is the idea that each node i is characterized by an attractiveness b;. This is a proxy for social appeal/status. In the model,
attractiveness are extracted from a uniform distribution with b € (0, 1]. In order to mimic close proximity interactions,
nodes move in a box of fixed size performing a biased random walk. More precisely, at each time step t, each node i moves,
with probability p;(t), a step of length r along a direction given by a randomly chosen angle. Instead, with probability 1—p;(t),
the node does not move. The probability p;(t) is defined as

pi(t) = 1 — max b;, (248)
JEEj(t)

where E; are the nodes within a distance d from i at time t. In these settings, the node i will create a connection with all the
nodes in its proximity, and it will be driven to stop and interact with a probability that is proportional to the attractiveness of
the most attractive node in the circle of radius d. The model considers also that nodes might not all be present, and willing to
make connections, at the same time. To include this aspect, nodes might be active or inactive. At each time step, an inactive
node i become active with probability ¢;, and an active node becomes inactive with probability 1 — t;. These probabilities
are extracted from an uniform distribution with t; € [0, 1]. Although, nodes do not keep memory of past interactions and
despite its extreme simplicity, the model is able to reproduce contact duration, time interval between contacts, and weight
distributions of real contact networks. Also, it captures the evolution of the average degree as function of time and the
distribution of groups sizes. It is of particular interest consider that a simple biased random walk in 2D driven by a random
distribution of attractiveness is able to capture highly not trivial properties of empirical close proximity networks.

1 The models have been extended to include more realistic link’s formation mechanisms [590,706].
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The study of close proximity contacts shows robust statistical patterns from one day to the next [707]. Interestingly,
the same holds considering different years (for different students) [707]. However, the interactions of each individuals
are not always the same. In fact, the study of the renewal of contacts in different days shows significant variations in
the ego-net of each individuals [707]. At this time-scale the distribution of number of contacts does not show large
heterogeneities [167,393,636,670,678,707]. As we saw above in the analysis of the epidemic threshold in activity-driven
networks, this observation is of particular importance. Indeed, as we discussed in details in Section 4 heterogeneities
in degree distributions make systems extremely fragile to the spreading of infectious diseases (lowering the epidemic
threshold) and at the same time make targeted vaccination strategies extremely efficient [167,280]. Consequently, contacts
networks at the time-scale of the day are more resilient to the spreading of infectious diseases, but also less susceptible to
targeted vaccination strategies than networks whose contacts are integrated over longer time-scales, i.e. months or years.
These observations clearly point out the importance of better understanding the features of close proximity contacts in order
to devise efficient vaccination strategies [393,592,593,712,713]. To this end, let us extend what discussed in Section 5 for
annealed and static networks by considering the efficiency of different vaccination protocols on time-varying networks. We
will focus on the case of activity-driven networks [592]. First, let us consider a random strategy (RS) in which a fraction of
nodes x is vaccinated. In this case, it is easy to modify the Eq. (241) and obtain [592]

Mogs 1 2@ & (249)
v T=x(a) + /(@) 1-X
In words, when a fraction x of nodes is randomly vaccinated, the epidemic threshold can be written as the threshold with
no intervention, &, rescaled by the number of nodes still available to the spreading process. Indeed, vaccinating random
nodes is equivalent to rescale the per capita spreading rate by the fraction of available nodes A; — X;(1 — x). As observed
in Section 4 this is the same in static and annealed networks. Fig. 42 shows the ratio between the number of infected nodes
in the endemic state with random and no interventions, I, /Iy, as function of x. As clear from the plot, the random strategy
(green triangle) requires more than 50% of vaccinated to reduce the endemic state to less than 20% respect to the scenario
without interventions. Let us now consider a targeted strategy (TS) in which xN nodes are vaccinated in decreasing order
of activity. This method is equivalent to fix a value a. so that any node with activity a > a. is immune to the contagion
process.” Also, for this scheme, it is possible to derive the analytic expression for the epidemic threshold [592]

Moo O — (250)
14 (@) + /(1 —x){a*)*

where (a")¢ = fE % a"F (a)da describes the moments of the activity distribution discounting the vaccinated nodes. Eq. (250)
is not a simple rescaling of the original threshold expression and implies a drastic change in the behavior of the
contagion process. Interestingly, vaccinating a very small fraction of the most active nodes is enough to stop the contagion
process. Indeed, as clear from Fig. 42 vaccinating just the top 0.04% of nodes is enough to halt the disease [592]. As
discussed in Sections 4-5, the network-wide knowledge required to implement targeted control strategies is generally not
available [714]. In the case of time-varying networks, this issue is even more pronounced as the characterization of nodes
depends on how long it is possible to observe the network dynamics [593]. Understanding the efficiency of strategies that
use partial information about the network is crucial. A possible implementation of this is based on egocentric samples (ES)
on the networks [592]. In particular, a fraction w of randomly selected nodes might act as “probes”. During an observation
time T, their egonet generated by their interactions in the network can be monitored. After the observation window, each
probe is asked to randomly select a node in the egonet that is then vaccinated. In this strategy, the probability of vaccination
for one node with activity a after a single time step is:

mNy mNy 1
P, =aw | dd —= w/da/a/—a—. 251
o= aw [ad 5 S (251)
The first term on the right considers the probability that a node of class a is active and reaches one of the probes; the
second term, instead, takes into account the probability that one node of class a is connected by an active probe. Solving the
integrals in Eq. (251), we can write P, = w (am + (a)). Starting from this consideration, the probability of vaccination after
t time steps is PL = 1 — (1 — P,)". The total number of nodes protected from the disease can be obtained summing over all
the activity classes: R" = )", NoPj = Y, Na[1— (1 — P)"].? Using this expression, it is possible to obtain the epidemic
threshold [592]:

M > €5 = 2(a)

- (252)
4 l1/]T + lIIOT‘I’ZT

2

3 The equation for P, does not consider the depletion of nodes in each class due to the vaccination process. The formulation is then a good approximation
for small w and T, when the probability that a probe is selected more than once is very small.

The values of x and a, are linked by the relation x = falr F(a)da.
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Fig.42. Comparison of the stationary state of an SIS model with and without control strategy, I, /I, as a function of x when A, /y = 0.81.In green triangles,
we consider the random strategy, in blue diamonds the targeted strategy, and in orange circles the egocentric strategy. Each plot is made averaging 10>
independent simulations started with 1% of random seeds. N = 104, m=3,e = 1073, activity distributed as F(a) ~ a=22.

Source: Adapted with permission from Ref. [592].

© 2014, by the American Physical Society.

where l1/nT = f da a"(1 — P,)TF(a). This last integral is a function of the observing time window T. As clear from Fig. 42
this strategy is much more efficient than the random one, although not as performant as the targeted one. It is important to
stress how the efficiency of this strategy is due to the ability to reach active nodes by a local exploration done observing the
systems for few time steps.

Another particularly important application of understanding close proximity contacts is the characterization of pathogen
transmissions in hospitals settings [668,715-718]. Indeed, nosocomial infections are a major problem for the safety and
health of patients and induce high economical costs [719]. However, due to challenges in the data collection, very little was
understood until very recently. Wearables provide an unique opportunity in this context. To the present day, RFID tags have
been used to identify or estimate pathways of transmission [715-717] and to help the test and develop prevention as well
as containment measures [668,718].

11.2. Non participatory digital epidemiology

Our daily interactions with technology generate an unprecedented amount of data that can be harvested for digital
epidemiology applications. Contrary to what we discussed above, here we will focus on methods that use data not generated,
nor stored, explicitly for epidemiological studies. In other words, we will review recent non participatory approaches in
which data is mined in search for proxies of epidemiological relevant behaviors/indicators.

11.2.1. Social media based methods

Social media provides unique opportunities to communicate, gather and spread information. The incredible progresses
of technology and the consequent diffusion of mobile smart devices boosts the penetration and relevance of such rich
medium. It did not take much time before our queries on search engines [720], communication on online social networks
[721-725], visits to Wikipedia pages [726-728], cancellations of online reservations [729], satellite images of parking lots
of hospitals [730], or online sources [731,732] started to be adopted for epidemiological applications. Indeed, all these
behaviors and interactions between us or with technology can be extremely relevant to model, characterize, anticipate,
and forecast the unfolding of infectious diseases [639].

While the details behind each methodology are case specific and clearly beyond the scope of this review, the basic
underlying ideas, as well as the associated pitfalls, are a common feature. In order to better understand them, we will
describe the prototypical example of Google Flu Trends (GFT) [733]. The service premiered in late 2008 and used our queries
on Google to predict the unfolding of the seasonal influenza (and in some countries also dengue) in 29 countries. As we will
describe later in more details, despite the initial glory, the service has been now discontinued and it has been reshaped in
the form of a data sharing collaboration with few institutes [734]. The basic intuition behind GFT is extremely simple and
powerful: traditional surveillance data (as for example the percentage of ILI visits) can be estimated and predicted by mining
search engine queries. In particular, the epidemiological real data describing the progress of ILIs in a specific country, P, is
estimated using proxy data, Q, describing the fraction of ILI related queries. More formally, the value of P at a given week is
obtained via a linear model:

P =19 +%Q +o, (253)

where the tilde refers to the logit of each quantity (y = log (ﬂfy)) the ¥s are fitting parameters, and g is an error
term. In other words, GFT obtains an estimation of P considering the fraction of ILI relevant queries, Q. Interestingly,
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this quantity is evaluated mining about hundred billions of queries on Google’s search engine. The methodology focuses
just aggregated signals, no information/features about users are considered. Furthermore, the classification of queries as
ILI relevant is performed measuring, independently, the correlation between 50 millions queries and historic surveillance
data. Remarkably, this unsupervised method, returns as most relevant queries, searches associated to influenza, influenza
complications, and remedies [720]. It is important to mention that the expression reported above could be generalized to
include a set of Q variables:

P=do+ ) #Q+o, (254)
i=1,n
each one associated to a different query [723]. However, as noted in the original paper, the performance of the method was
higher adding up all the signal in a signal explanatory variable [720]. The initial results reported were extremely impressive:
GFT had a mean correlation with surveillance data of about 0.97 and was able to predict it one/two weeks ahead. It is worth
thinking about this a bit more. A simple linear regression model fed with an unparalleled dataset of queries to a search
engine is able to estimate with great accuracy information about the unfolding of ILL

Clearly the methodology described is quite simple. The strength of the approach is the unique and unprecedented
dataset used. For many different reasons this data cannot be easily shared. Consequently, researchers applied, extended, and
improved the GFT archetype to other data streams that are instead accessible. Examples are Twitter and Wikipedia. Indeed,
in both cases large samples and/or relevant complete information can been gathered via their standardized APIs. Methods
using Twitter data rely on the assumption that people post tweet, information about their health status. In particular,
tweets are mined in search of ILI related terms that are fed to regression models [722-725,735]. The relevant terms are
typically provided a priory or learned via machine learning techniques. Indeed, researchers do not have, typically, the
computational resources of Google to test independently each n-gram used on Twitter. An increasing fraction of tweets
contains geographical information that can be adopted to create models at different granularity going from cities [724]
to countries [722,723,725,735]. Methods based on Wikipedia consider pages view of particular entries as data proxies
[726-728]. The underlying assumption is the same of GFT: users visit specific pages to gather information about diseases,
their symptoms, and possible medications. The approaches presented so far have been not focused just on ILI, but they
considered a wide range of transmissible diseases going from dengue to ebola [726]. As we observed in the case of
participatory digital surveillance data, the results of GFT or similar tools based on different data proxies can serve as input
for modeling efforts based on unstructured (sub)populations (see Section 3). A nice summary the results of such approaches
in providing actual predictions for the 2013-2014 flu season in the USA is detailed in Ref. [736].

Social media offers unprecedented opportunities to access information and communicate. Unfortunately, they can
also be used effectively to spread misinformation, myths, or conspiracy theories [737]. In the realm of public health
this phenomenon has been extremely clear. Indeed, as discussed in Sections 7-9 vaccination coverage has been affected
by the spreading of myths (as the link between vaccines and autism or sterilization) or miscommunication and poor
policy making from public officials (as in the case of Nigeria boycott of polio vaccination) [738,739]. Social media has
changed significantly the way people acquire health information. We transitioned from classic doctor-patient to more
patient-patient or patient-social media interactions [7]. On one side, this allows digital epidemiology based on social media
to work. On the other, it makes us susceptible to the spreading of unfounded and unscientific information.

Many experts are now referring to the decrease of vaccination rates as a confidence crisis linked to the spreading
of unscientific myths on social media, but also to socio-economical, socio-cultural, psychological, and political factors
[7,387,403,740-742]. The features of online discussions about these and other topics can be mapped and as discussed in
Section 9 used to model behavior-vaccination dynamics [737,738,743-746]. Interestingly, different opinions (pro and anti
vaccination) induce effects of polarization in which individuals of different ideas do not interact much. As consequence,
communication networks cluster in separated communities, eco-chambers, that exacerbates the challenges in spreading
factual and expert-based knowledge. Furthermore, a recent study on the diffusion of sentiments regarding vaccines on
Twitter suggests other peculiar dynamics [746]. First, individuals that are connected with large number of opinionated users
are inhibited from expressing their own opinions. Second, exposure to negative sentiments is contagious while exposure to
positive sentiments is not. All together these results indicate that peer influence and social contagion are content dependent
and far from being trivial. It is important to mention how social media and more in general technology are also used to
improve vaccine communication and coverage via texts, emails, calls, apps, and web services [747-749].

Despite good performances, all digital epidemiological methods based on social media are affected by several limitations
(see Table 8). Also in this case, we will consider GFT as example to better understand the shortcomings and potential pitfalls
of these approaches. GFT has been released in November 2008 showing great results. However, the tool was not able, despite
being updated, to predict the unfolding of the pandemic in 2009 [750,751]. Furthermore, GFT overestimated (i) 92% of the
weeks in the seasons 2011 and 2012, (ii) the peak in 2013 (the prediction was more than double the real value). As we
wrote above the service has been now discontinued [734] and it is limited to data sharing with research partners. The
reasons behind these bad performances are several. Firstly, GFT adopted simple correlations between online queries and ILI
surveillance data. In doing so, it captured other phenomena correlated with ILI as for example winter patterns. The pandemic
in 2009 peaked much earlier (late October early November) than the classic flu. Probably, this is what impeded GFT to
capture its unfolding. Secondly, Google search engine is highly dynamical. Changes are constantly implemented. Some of
them might modify users’ searching behaviors, as for example the auto-complete suggestions. It is important to consider
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Table 8
Summary of the main advantages and disadvantages of social media based methods
in digital epidemiology.

Main advantages Main disadvantages

Sample size Possible biases in sample

Access to different geographical Correlations might be spurious

granularities

Near real-time analysis Simple word matching might not
sufficient

Cheaper data collection n-gram selection computationally
expensive

Rich set of information available Changes in platform design and
functionalities might influence users
behaviors

all of these points as they are likely to affect all digital tools for epidemiology. Indeed, they are typical shortcomings and
issues associated to all non participatory data collections. In particular, simple correlations might not be enough to describe
complex phenomena unfolding at different scales in time and spaces respect to those used for training purposes. More in
general, correlation does not guarantee causation. A recent study on Twitter shows that the time series of the word zombie is
a very good predictor of the seasonal flu [723]. Furthermore, matching searches or keywords to context (in this case disease)
without taking in account that the same word can be used in discussions completely unrelated to illness might introduce
spurious correlations or decrease the signal to noise ratio [752]. Notwithstanding, it is fundamental to acknowledge the
potential of these tools in the fight against infectious diseases. They offer unprecedented opportunities to estimate epidemic
proxies at high geographical resolution or in locations where surveillance data is not available. Furthermore, these data
can be used to inform realistic epidemic models [649,753] as well as a large number of more theoretical models as those
described in Sections 4-9.

11.2.2. Mobile phone based methods

Mobile phones are one of the most diffuse technological device. About 96% of the worldwide population has one [754].
For billing purposes phone carriers collect call data records (CDRs) that can be mined and used to study our communications,
social networks, and mobility (see Ref. [755] for a recent review). The last two phenomena are of epidemiological relevance.
In particular, contact networks estimated via CDRs can be used to characterize human interactions at large and long-
term scales well beyond those accessible via participatory experiments mentioned above. Although, not all connections
mediated by mobile phones are relevant for disease transmission, recent studies clearly show the possibility of inferring
close proximity networks from CDRs [756,757]. The temporal features describing mobile phone networks are similar to those
of actual closed proximity interactions [590,679,680,758]. However, CDRs can provide just contact networks integrated in
time. Indeed, the empirical timestamp of each interaction is not per se relevant for disease spreading. Interestingly, also
these, time-aggregated and static, networks share several statistical features with close proximity contacts. In particular,
high clustering, transitivity, and assortativity have been reported [755]. Furthermore, integrated mobile phone datasets
are typically characterized by heavy-tailed distributions of contacts and weights. However, their heterogeneity are, also
in this case, function of the time window used to aggregate data [759]. From a modeling stand point, CDRs perfectly
lend themselves as input and test bed for the different modeling efforts beyond the homogeneous mixing approximation
discussed in Section 4. Human mobility is another crucial ingredient for spreading of infectious disease. CDRs provide
unprecedented opportunity to study this human phenomena. The large body of literature on the subject identifies three main
characteristics of our movements [755,760]. Firstly, the exploration of new places is very slow. Secondly, our movement is
relatively predictable. Thirdly, the way each one of us moves is rather unique. The understanding of such features has been
crucial for modeling and understanding of the spreading of infectious diseases. For example approaches informed with
data from CDRs have been used to map and control the spreading of Malaria [761,762], Ebola [763], and ILIs [249,764]. In
order to better understand the potential and importance of this data we will briefly summarize the methods and results
recently reported in Ref. [761]. The diffusion of Malaria is the results of a complex process that involves the interaction
between its parasite and two hosts: mosquitoes and humans [761]. In particular, the movement of people increases the
dispersal of the parasite beyond the reach of mosquitoes. CDRs in combination with spatially resolved information about
Malaria prevalence have been used to define how human movements drive parasite importation between different regions
of Kenya. In particular, CDRs were used to quantify the travel patterns of about 15 millions of people (around 34% of the total
population) over one year. The calls of such individuals have been mapped to one of the 12,000 cells towers spread across
692 settlements [761]. In order to define the primary settlement for each person, the researchers considered a majority rules
according to the time spent in each location. Furthermore, they collected information, such as destination and time, about
the movements of individuals made out of their primary settlement. This data has been combined with an simple epidemic
transmission model based on high resolution maps of Malaria prevalence. The fusion of these two data sources allowed
to define the networks of parasite movements across the country as well as source (net emitters of people and parasites)
and sink (net receivers of people and parasites) regions [761]. These results provided unprecedented lens to characterize
Malaria dynamics and spreading. More importantly, they suggested a novel set of strategies for containment that targets
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large flows of human movements associated with high risk of importations. These encode many aspects of the complex
dynamics driving the spreading and go well beyond the typical based on local transmission hot spots or routine surveillance
in high-risk areas [761].

11.3. Mixed approaches

We distinguished among the various methods and tools of digital epidemiology considering the strategy used for data
collection. So far we presented active (participatory) or passive (non participatory) approaches. This division is quite clear
and includes most of the notable tools. However, there are some that are a mix between the two. In the case of Health
Map [765] the mix is quite asymmetric and it could have been classified as non participatory tool. This project is a data
grinder. It considers a wide range of data sources such as different online data streams, eyewitness reports, expert-curated
discussion, and official reports [765-767]. It has been lunched in 2006 with the goal of monitor, nowcast, and predict the
spreading of infectious disease. The data is fetched, classified, and visualized 24/7/365. The system is automatized and
allows to process and digest incredible amount of relevant information providing comprehensive reports that are used
to facilitate the detection or monitoring of public health threats across the world. The Health Map infrastructure is behind
an impressive number of projects and specific applications [768,769]. Examples include Health Map Flu Trends in which all
the different data streams are combined to provide forecasts of flu activity in the USA [770,771], Dengue Map that provides
real-time alerts of dengue outbreaks [772], or Health Map Vaccine which connects the population with vaccines [749,773].
As for the participatory surveillance systems described above, the data provided by Health Map does not provided any
information about the contacts of individuals. It provided instead, data at the (sub)population level that can be used to
develop unstructured compartmental models (see Sections 3 and 8).

Another application that mixes data from social media to active participation of users is Crowdbreaks [774]. This tool
mines Twitter in search of tweets of epidemiological relevance. Crowdbreaks is a system for digital surveillance able to
provide geographically resolved information about diseases in the USA. The selection of relevant tweets process is what
makes it unique. Indeed, the task is crowdsourced to users visiting the webpage. In particular, it adopts the wisdom of the
crowd to classify tweets as relevant, not relevant, or potentially relevant to a particular disease. With the collaboration and
direct engagement of people the performance of machine learning methods used to automatically detect relevant tweets
increases in time. The system, is currently in a beta version during which the contribution of individuals is crucial to help
make it operational.

12. Conclusion, discussion and future research

This review has summarized the rich opportunities and challenges for studying theoretical and empirical aspects of
the complex interactions between vaccinating behavior and disease dynamics, as well as the many opportunities to apply
methods and concepts from statistical physics to these interactions. This was first seen in the contrast between mean-field
models that do not incorporate human behavior versus mean-field models that do incorporate them (Sections 3 and 8).
Mean-field models continue to play an invaluable role in the development and application of the behavioral epidemiology
of infectious diseases in at least two respects. Firstly, they have shown the intrinsic complexity of coupled behavior-disease
dynamics: coupled behavior-disease models generate emergent dynamics that are not present in models where vaccinating
behavior is ignored, and coupled models also exhibit more dynamical outcomes in general. For instance, these models can
exhibit oscillations in disease outbreaks and vaccine coverage even when the corresponding compartmental model does not
exhibit any such dynamics. By incorporating human behavior (either explicitly or implicitly) we can ask questions that are
not possible with models lacking behavior, such as how do different modes of communication (e.g. word-of-mouth versus
mass media) influence the probability of eradication of a vaccine-preventable infection? Secondly, coupled behavior-disease
models have demonstrated the ability to explain observed data better compared to simple behavior-free epidemiological
models, in cases where data availability permits such a comparison. As a result, mean-field behavior-disease models show
potential for informing public health policy makers of modern industrialized countries planning the introduction of a new
vaccine; planning the response to a decline in vaccination coverage following a rumor; or more generally to strategically act
to increase the degree of resilience of public vaccination systems in face of the threat posed by human behavior in a world
where risks from most common infections are typically perceived as “minor”.

Future research on mean-field behavior-disease models should aim to further exploit benefits and potentialities of simple
models, such as representing simple and parsimonious environments for coupling behavior-disease dynamics and allowing
predictions at a high level of abstraction (e.g. population-level prevalence and coverage). As such, a first line of inquiry
should use mean-field models for investigating the implications of further social, economic, or psychological theories of
behavior relevant for vaccination in order to achieve a more detailed understanding of the “typically observed” behavior (see
e.g. [399]). A second line should aim to more extensively develop the - just initiated - empirical use of mean-field models
by applying them over different datasets (e.g. different countries) and different infections (e.g. measles vs pertussis). This
would allow to test the role of different behavioral factors and improve our understanding of why such factors promoted
different behavioral responses to the same rumor, such as observed in the MMR vaccine-autism rumor. A third line of
inquiry should aim to systematically include stochasticity in simple behavior-disease models, with the aim to preserve
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parsimony but at the same time to better account for the fact that most challenges due to vaccine refusal will appear
under circumstances of disease rarity, i.e. when infections become sub-critical due to efficient control, thereby lowering
the perceived payoff of vaccination. These situations are of special relevance for large scale elimination plans, as the World
Health Organization plans for measles elimination, where local infection rarity is expected to become the rule of infection
dynamics and chance effects become fundamental. Last, straightforwardly incorporating behavioral responses in the realistic
age-structured models typically used to evaluate the impact of intervention programs would help such models account for
possibly the most important source of uncertainty about the future success of vaccination programs—human behavior. We
emphasize that these suggestions do not exhaust the possibilities for further development of mean-field behavior-disease
models.

Mean-field models assume that the population can be approximated as a continuum, and they are often deterministic
in nature. However, for many applications, it may not be possible to ignore the discrete, individual-based nature of real
populations. Section 5 - on models for disease dynamics and vaccinating on networks that do not explicitly represent
behavior dynamics - showed that even without taking individual behavior into account, understanding networks of
individual contacts in a population has a critical role to play in shaping our understanding of epidemiological processes.
It is vitally important that network structure is taken into account if we attempt to predict population-level dynamics
from individual-level observations. In addition, many intervention strategies such as contact tracing or ring vaccination
can only be accurately captured and modeled using network-based approaches. The emergence of network modeling tools
enables different strategies to be tested in an artificial environment. Finally, vaccination on time-varying networks is another
interesting research topic in this area, requiring high-resolution temporal data to track and understand the control of disease
and the dynamic evolution of networks.

Given that network models lend themselves so easily to representation of individuals, it is perhaps no surprise that the
recent growth in network-based coupled behavior-disease models has been so rapid, as described in Section 9. As with the
mean-field models, many behaviors were noted in network behavior-disease models that were not possible in network
models lacking behavior, such as the difficulty of eradicating infection. Moreover, the importance of local structure and
stochasticity take on new meaning, in networks where nodes actively adapt to their local epidemiological environment.
In Section 9, we provided an overview of current results about behavioral vaccination in networked populations. Starting
from the simple single-layer networks, we first reported the influence of benefit-inspired imitation dynamics, network
topology, external incentives as well as additional protection measures on individual vaccination willingness and total
vaccination level. We then demonstrated how social clusters expand and induce a large outbreak probability even if there
exists extremely high vaccination coverage on empirical networks. It is worth mentioning that opinions about vaccination
have been well identified as another type of method for protection measure updating. Finally, we briefly discussed the
recent progress of behavioral vaccination on the novel framework of temporal and multilayer networks, where the links
among nodes are time-varying or multiple. Along this line, behavioral vaccination on metapopulation networks deserves
our considerable attention in future, because this topology supports the human mobility and information exchange among
different patches, which will directly affect how human update their measures and seems closer to realistic situations. This
framework, on the one hand, will further enrich content of behavioral vaccination (especially the feedback loop between
human behavior and disease) with mobile fashion, similar to reaction-diffusion processes in physical chemistry. On the other
hand, such a framework can be well-integrated with empirical data, such as the control of an infectious disease pandemic
driven by air travel [775]. As mentioned above, (benefit-inspired or opinion-based) updating dynamics plays a crucial role
in the final vaccination level and epidemic incidence. Most existing literature assumes that everyone has the same updating
criterion, namely, identical cognition process for infection risk, vaccine risk and benefit brought by vaccination, which in
fact greatly differs among individuals due to social norms, education background, age structure, etc. This point may attract
great interest in future research. Risk perception on networks is another unexplored field of voluntary vaccination. The
vast majority of models assume that information transmission of infection risk is completely local (i.e. coming from the
contacting neighbors) and neglects information dissemination to the whole population or network, which is ubiquitous in
reality, due to public media. Thus, how to incorporate local and global information into one modeling framework will be of
particular significance in future.

Other unexplored problems concerning behavior-disease interactions on vaccination networks also merit great attention
in the future. For instance, these approaches could be extended to other types of vaccination on multilayer networks, like
local vaccination, or targeted vaccination based on various centrality indices. However, the development of a theoretical
framework for multilayer networks still lies at the beginning stages: there are no uniform definitions of these centrality
indices, which indicates that such a task needs in-depth interdisciplinary collaborations, especially with network scientists.
Another scenario that must attract more attention is when multilayer networks support different dynamical processes on
each layer. An infectious disease can spread simultaneously on different layers, or disease and awareness can diffuse in their
respective layers. In such cases, how to implement vaccination becomes a novel challenge. Additionally, one of the most
sophisticated and commonly used models for non-behavioral infectious disease modeling is the meta-population network,
where individuals can move between different patches due to migration or commuting, as in many real-world populations.
Vaccination on these and other social structures using endogenized behavioral dynamics remains little explored. Finally,
one of main needs in theoretical epidemiology of infectious diseases is the development of new analytical or approximated
theoretical physics methodologies in order to make simulation-independent inferences concerning individual-based
models. Indeed, inference uniquely based on simulations can sometime hide the underlying big picture of a complex system.
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We suggest that Ising models, percolation theory, and related approaches from statistical physics may be useful for studying
coupled behavior-disease dynamics on networks, just as these approaches has proven useful in the study of (non-behavioral)
epidemiological processes on lattices [222,250,776].

The ultimate standard in any scientific discipline should be testing hypotheses against data, and the standard for models
of coupled behavior-disease dynamics should be no different. The last few sections of our review explored existing data
sources like surveys and vaccine coverage records, which could be used to parameterize or validate such models. Measuring
and assessing immunization levels remains a difficult problem. As more health systems globally are moving into the digital
area, we can expect an improvement in the quality of the data. Furthermore, novel biomedical approaches may make it
easier to assess whether individuals could mount an immune response, the expected waning time, and how immunity
came about (vaccination vs. infection). Such individual-level characteristics are highly relevant to population-level infectious
disease models. Nevertheless, as problems of vaccinations are particularly pronounced in low-income countries, the general
challenges will remain in the foreseeable future. Surprisingly, the problems described here - uncertainty in vaccination
coverage, and variability in vaccine efficacy and effectiveness - are only rarely taken into account in theoretical studies of
infectious disease dynamics. We hope that in the future, these real world issues will get more attention in the modeling
literature.

The last few sections of our review also explored new digital data sources that could facilitate a new era in the theoretical
and empirical development of coupled behavior-disease models. Digital epidemiology is a very new and promising area of
research: a natural evolution of epidemiology in the digital era. Such data sources lend themselves very naturally to network
coupled behavior-disease models. Recent advances in mobile phone technology, information from twitter, Facebook, and
GPS location enables us to determine individual connections, or even track the movement of people in real time. This would
help us to build full and comprehensive networks for many airborne diseases such as influenza. It will also track how these
network topologies change in the face of a severe epidemic, or even how individual behaves when an intervention measure
isimplemented. The vibrant body of literature on digital epidemiology shows incredible potential as well as future directions
and challenges. The size and heterogeneity of the datasets we will face is destined to increase dramatically. This will require
the development of new algorithms and techniques to effectively collect, store and analyze large-scale epidemiological
data. In particular, new approaches, specifically designed for epidemiology, will be needed to filter, classify, and model
massive data streams. Cheaper and more scalable devices will be required to improve our understanding of face-to-face
interactions and thus of spreading pathways. From a theoretical standpoint, new frameworks able to further characterize
the complexity of human contacts and their effects on epidemic spreading will be needed. In particular, it will be crucial
to deepen our understanding of the temporal, and high-order structural features of social interactions. Furthermore, a
better understanding of the dynamics of social contagion will be necessary to characterize behavioral changes induced by
spreading of information/misinformation that affect vaccination rates and more in general disease spreading. The future
of digital epidemiology is also tied to the development of new approaches for data access, sharing and privacy. Indeed,
the ethical and legal challenges that arise from mining human digital traces are in general far from be understood or well
regulated. Digital epidemiology is a truly interdisciplinary endeavor that currently connects a wide range of disciplines
ranging from data science and mathematics to network science and medicine. A new breed of practitioners able to bridge all
of these disciplines are necessary to face the challenges ahead. Furthermore, the prospect of being able to relate individual-
level behavioral dynamics to population-level behavioral dynamics with unprecedented spatial and temporal resolution
raises the possibility of attempting to develop a statistical physics of behavior. The extensive literature on non-equilibrium
thermodynamic theory may prove useful in this endeavor [777].

Clearly, the opportunities for new theory and new applications, as well as the potential awards of success, are enormous in
the field of coupled behavior-disease modeling. But how can the field move forward on these opportunities? Review papers
often include a discussion paragraph on how more interdisciplinary interactions are needed. We fall to the temptation of
including such a paragraph here, but we will explain exactly why interdisciplinary interactions are valuable in the context
of this particular field. The field itself emerged from interdisciplinary interactions when researchers - usually trained in
other areas like physics or mathematics - took an interest in disease systems. Despite this, there remains a need for more
interdisciplinary interactions than currently take place. For instance, physicists, mathematicians, and economists often
develop models of behavior-disease interactions in parallel with one another and apparently without interfacing with
the knowledge of the other fields. This not only risks duplication, but also means that research fails to benefit from cross-
fertilization of ideas. Interactions with epidemiologists and public health researchers could also be more pervasive than they
currently are, in order to ensure that these models are ultimately applied to improving population health outcomes in the
real world. In a similar vein, the scope of interdisciplinary interactions needs to expand to include new fields. For instance,
digital data and machine learning hold significant promise for helping us better understand behavior-disease interactions
and parameterize coupled behavior-disease models. However, properly harnessing these new sources of data will require
help from statisticians and computer science experts.

Interdisciplinary interactions are stymied by different terminology used by differently trained researchers. For instance,
the theoretical study of interactions between disease transmission and behavior has been variously referred to using
terms such as “behavioral epidemiology”, “economic epidemiology”, “coupled disease-behavior systems” and other terms
although in some cases, it should be noted that these terms do not completely overlap because they are used differently to
marry different sets of concepts. Similarly, economists use the word “rational” to describe selfish, socially blind behavior,
although other fields would not describe such behavior as rational in its usual sense. The problem of inconsistency in
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language could be addressed through workshops devoted to bringing together different fields, which would also help the
more general lack of interaction between different disciplines. A degree of coordination as exhibited by the nomenclature
committee of the International Astronomical Union for studying interactions between behavior and disease is probably
impossible due to the nature of the subject, but efforts to bring together different types of experts could at least accomplish
some of the benefits of greater coordination.

Shakespeare famously ended his play “A Midsummer Night's Dream” with an apology from the spirit Puck to the
audience: “If we shadows have offended, Think but this, and all is mended—That you have but slumbered here While these
visions did appear”. We also wish to apologize to the readers in advance, for having inadvertently missed some excellent
papers in the literature, having unintentionally misrepresented other papers that we did include, or being completely wrong
about where the field should go next. However, there is no need for the reader to pretend our review was something they
dreamed while slumbering. Instead, please write us if you feel our review was lacking in some respect, or better yet, publish
some research that shows us the value of other perspectives on the field. If nothing else, we hope that our review has
convinced the readers that coupled behavior-disease modeling is a rapidly growing area that promises exciting theoretical
developments and empirical applications in the coming decade, especially if we draw on the accumulated knowledge of
many decades of statistical physics.

Table A.1

Abbreviations of the used phrases in our report.
Abbreviations Full names First appeared
SIR Susceptible-Infectious-removed
SIS Susceptible-Infectious-Susceptible
SEIR Susceptible-Exposed-Infective-Removed
SEIRS Susceptible-Exposed-Infective-Removed-Susceptible
ODE ordinary differential equation
GAS globally asymptotically stable
AIDS acquired immune deficiency syndrome
FOI force of infection
BRN basic reproduction number
ERN effective reproduction number
VRN vaccine reproduction number Section 3
NGO next generation operator
AR attack rate
DFE disease-free equilibrium
EE endemic equilibrium
WAIFW matrices Who Acquires Infection From Whom matrices
ME Master equation
CLE Chemical Langevin equation
FPE Fokker-Planck equation
SDE Stochastic Differential equation
Cccs critical community size
ER graph Erdos-Rényi graph
SW network small-world network
WS model Watts and Strogatz model
SF network scale-free network
BA network Barabasi-Albert network
DMS model Dorogovtsev-Mendes-Samukhin model Section 4
DBMF Degree-based mean-field theory
IBMF Individual-based mean-field theory
ICM Independent cascade model
GEMF framework generalized epidemic mean-field framework
STD sexually transmitted diseases
CBF community bridge finder .
BHD bridge-hub detector Section 5
SIAs special immunization activities
MMR measles-mumps-rubella Section 6
AIC Akaike Information Criterion
SEU subjective expected utility .
ESS evolutionarily stable state Section 7
VAE vaccine adverse effects
IGD Imitation Game Dynamics
EGDT Evolutionary Game Dynamics Theory
VSE vaccine side effects Section 8
ISNs injunctive social norms
CSNE convergently stable Nash equilibrium
MDPT Markov decision processes theory

(continued on next page)
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Table A.1 (continued)

Abbreviations Full names First appeared
RV random vaccination
NN nearest neighbor vaccination .
. 2 Section 9
cv chain vaccination
INN improved nearest neighbor vaccination
DHS Demographic and Health Surveys
MICS Multiple Indicator Cluster Surveys
EPI Expanded Programme on Immunization Section 10
LQAS Lot Quality Assurance Sampling
HPV Human Papillomavirus
ILI influenza like illnesses
RFID radio frequency identification devices
ES egocentric samples
GFT Google Flu Trends Section 11
CDRs call data records
RS random strategy
TS targeted strategy
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Appendix

Here, we provide a summary of abbreviations of the used terminologies in the main text.
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